MAJORIO: A WEB BASED APPLICATION FOR DETERMINING COURSE AT BAKRIE UNIVERSITY USING FUZZY ANALYTICAL NETWORK PROCESS (FANP) AND TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SOLUTION (TOPSIS)

UNDERGRADUATE THESIS

UTOMO HENDRA SAPUTRA
1112002021

INFORMATION SYSTEM
FACULTY OF ENGINEERING AND COMPUTER SCIENCE
BAKRIE UNIVERSITY
JAKARTA
2017
MAJORIO: A WEB BASED APPLICATION FOR DETERMINING COURSE AT BAKRIE UNIVERSITY USING FUZZY ANALYTICAL NETWORK PROCESS (FANP) AND TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SOLUTION (TOPSIS)

UNDERGRADUATE THESIS

UTOMO HENDRA SAPUTRA
1112002021

INFORMATION SYSTEM
FACULTY OF ENGINEERING AND COMPUTER SCIENCE
BAKRIE UNIVERSITY
JAKARTA
2017
STATEMENT OF ORIGINALITY

This undergraduate thesis is my original work and all information contained in this project paper which is derived from the work of others had been given an award by citing the name of the source’s author correctly. All the contents of this undergraduate thesis are the responsibility of the author thoroughly.

Name : Utomo Hendra Saputra
NIM : 1112002021
Signature :
Date : September 14, 2017
STATEMENT OF APPROVAL

This Undergraduate Thesis is prepared and presented by:

Name : Utomo Hendra Saputra
NIM : 1112002021
Study Program : Information System
Title : MAJORIO: A Web Based Application For Determining Course At Bakrie University Using Fuzzy Analytical Network Process (Fanp) And Technique For Order Preference By Similarity To Ideal Solution (Topsis)

Has been approved by the Board of Examiners and accepted as a partial fulfillment of the requirements for Undergraduate Degree in Information System, Bakrie University.

BOARD OF EXAMINERS

Supervisor I : Guson Kuntarto, ST, Msc

Supervisor II: Gun Gun Gumilar, S.Kom., MMSI

Examiner I : Dr. Siti Rohajawati, S.Kom., M.Kom

Examiner II : Boy Iskandar Pasaribu, S.Kom, MIS, MIT
ACKNOWLEDGEMENT

The greatest thankfulness and praises are conveyed to Allah SWT for all the endless blessing and mercy that the author could finish this undergraduate thesis with the title “MAJORIO: A Web Based Application for Determining Course at Bakrie University using Fuzzy Analytical Network Process (FANP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)”. This final project is submitted as the partial fulfillment of the requirement for the Undergraduate Degree (Strata 1) of Information System at Bakrie University.

I would like to express my sincere appreciation to the following individuals for their contribution to help the author on order to complete all the writing process, i.e.:

1. My awesome supervisors Mr. Guson Kuntarto and Mr. Gun Gun Gumilar for their precious guidance, wisdom, and everlasting patience and support throughout the preparation of this undergraduate thesis. Despite of their tight work schedule, they always had time for discussion and deliberation of the various things related to this research although the author had so many issues to understand the theory for this research.

2. I also extend my sincere gratitude to Mrs. Siti Rohajawati and Mr. Boy Iskandar Pasaribu for their inputs, feedback and guidance in breaking obstacle in doing the analysis and the simulation of this research.

3. My special gratitude is also dedicated to my beloved parents, Papa Sarimun and Mama Umi Kursiyah, for their amazing support and many prays of their many nights for the success of their son also for my sister Ayu Dwi Lestari for being supportive.

4. Special thanks to Bastian Saputra (Hudzaifah), Vivid A. Chairunissa, Maya Avinda, Evilda Astriansa, Nahda Rizqi M, Ishadi Fauzan and all my Thesis war team for all the support from the beginning of this research till the end also for being my best friend for over 6 years and made my
campus life sparkly, and my big family SIF 2011 for all the inputs and helps.

5. Last but not least, I also extend my gratitude for myself who is so tough and always keep the spirit on so I can finish this undergraduate thesis despite of any problem happened during finishing this work.

Lastly, I hope that God Almighty is pleased to reply for all the good of all those who has helped. Hopefully, this undergraduate thesis brings benefit to the other parties who need.

Jakarta, September 14, 2017

Utomo Hendra Saputra
STATEMENT OF APPROVAL OF UNDERGRADUATE THESIS FOR ACADEMIC PURPOSES

As an academic community of Bakrie University, I who assigned below:

Name : Utomo Hendra Saputra
NIM : 1112002021
Study Program : Information System
Type of Thesis : Implementation Research

For the development of science, agreed to grant Bakrie University non-exclusive Royalty-Free Rights (non-exclusive, Royalty-Free Rights) for my undergraduate thesis, entitled:

MAJORIO: A Web Based Application for Determining Course at Bakrie University using Fuzzy Analytical Network Process (FANP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

With the non-exclusive Royalty-Free Rights, Bakrie University is holding rights to keep, avert media/format, manage database, maintain, and publish my final assignment as far as my name as author/creator and owner of Copyright is mentioned.

Prepared in : Jakarta Selatan
Date : September 14, 2017
Stated By : (Utomo Hendra Saputra)
MAJORIO: A WEB BASED APPLICATION FOR DETERMINING COURSE AT BAKRIE UNIVERSITY USING FUZZY ANALYTICAL NETWORK PROCESS (FANP) AND TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SOLUTION (TOPSIS)

Utomo Hendra Saputra

ABSTRACT

In selecting course at University, graduated students from high school rarely exposed with the information regarding with the courses offered. This lack of information about university’s courses may lead to a problem which student may choose course that less preferences. This research aims to design and develop a Decision Support System (DSS) that can be used to assist students in selecting preferable course according to their interests and talents. The DSS named Majorio. The system build according to the curriculum 2013 and multiple information theories. Majorio is developed using combination of two algorithms/functions: Fuzzy Analytical Network Process (FANP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). This combined function is used to calculate a combination of talents and academic competence and analyze how far the individual match against course. The methodology used in the development of Majorio is Web Methodology Language. This requires five stages including: requirement analysis, conceptual modelling, implementation, testing and implementation, deployment. Since Majorio is a web-based application, it will be accessed in majorio.org. Majorio is developed using PHP as a medium for data access which is supported by Apache web service while Javascript is used as a criterion calculating machine on the client side. The results of this study are 10 criteria used in determining the course, Majorio DSS design formed into Unified Modeling Language (UML), and Comparison ranking between Fuzzy ANP and Fuzzy ANP TOPSIS resulting in calculation of Fuzzy ANP TOPSIS more accurate than Fuzzy ANP. In summary, the analysis of study show that 80% respondent students agree that Majorio can help them in selecting preferable course according to their interests and talents.

Keywords : FANP, TOPSIS, DSS, Majorio, WebML
TABLE OF CONTENTS

STATEMENT OF ORIGINALITY ... ii
ABSTRACT .. vii
TABLE OF CONTENTS .. viii
LIST OF FIGURES .. xi
LIST OF TABLE ... xiv
LIST OF EQUATIONS ... xviii
ABBREVIATIONS LIST .. xx
APPENDIX LIST ... xxii

CHAPTER 1 INTRODUCTION ... 1
 1.1 Research Background .. 1
 1.2 Problem of Statement .. 4
 1.3 Research Objectives .. 5
 1.4 Scope of Research .. 5
 1.5 Research Contributions ... 5

CHAPTER 2 LITERATURE REVIEW ... 7
 2.1 Related Research .. 7
 2.2 The Concept of Decision Support System .. 9
 2.2.1 Decision Making ... 11
 2.2.2 Structured and Unstructured Decision Process 14
 2.2.3 Model of Choice Process .. 16
 2.2.4 Model of Academic Choice .. 18
 2.2.5 Curriculum 2013 (K13) ... 20
 2.2.6 Theory of Multiple Intelligences .. 24
 2.2.7 Architecture for Decision Support Systems 29
 2.3 DSS Methodology ... 31
 2.3.1 Analytical Network Process (ANP) ... 31

CHAPTER 1 ... 34
 2.3.2 Fuzzy Concept .. 39
 2.3.3 TOPSIS .. 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4 Fuzzy ANP and TOPSIS Methodology</td>
<td>44</td>
</tr>
<tr>
<td>2.4 Software Development Methodology (SDLC)</td>
<td>47</td>
</tr>
<tr>
<td>2.4.1 Web Modelling Language (WebML)</td>
<td>47</td>
</tr>
<tr>
<td>2.5 Database System</td>
<td>52</td>
</tr>
<tr>
<td>2.5.1 Relational Database Management System (RDBMS)</td>
<td>52</td>
</tr>
<tr>
<td>2.5.2 Object Oriented Database Management System (OODBMS)</td>
<td>53</td>
</tr>
<tr>
<td>2.5.3 Document Oriented Database</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Programming Language</td>
<td>56</td>
</tr>
<tr>
<td>2.6.1 Apache+PHP</td>
<td>57</td>
</tr>
<tr>
<td>2.6.2 NodeJS+AngularJS</td>
<td>57</td>
</tr>
<tr>
<td>CHAPTER 3 RESEARCH METHODOLOGY</td>
<td>60</td>
</tr>
<tr>
<td>3.1 Research Workflow</td>
<td>60</td>
</tr>
<tr>
<td>3.2 Web Based Application Methodology</td>
<td>64</td>
</tr>
<tr>
<td>3.3 Fuzzy ANP TOPSIS Model</td>
<td>67</td>
</tr>
<tr>
<td>CHAPTER 4 RESULTS AND IMPLEMENTATION</td>
<td>70</td>
</tr>
<tr>
<td>4.1 Pre-Research</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1 User Interviews</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2 Literature Study</td>
<td>70</td>
</tr>
<tr>
<td>4.1.3 Method Comparisons</td>
<td>70</td>
</tr>
<tr>
<td>4.1.4 Majorir</td>
<td>71</td>
</tr>
<tr>
<td>4.2 Requirement Analysis</td>
<td>71</td>
</tr>
<tr>
<td>4.2.1 Need Assessment</td>
<td>71</td>
</tr>
<tr>
<td>4.3 Data Collection</td>
<td>72</td>
</tr>
<tr>
<td>4.3.1 Decision Maker Identification</td>
<td>72</td>
</tr>
<tr>
<td>4.3.2 Criteria Identification</td>
<td>72</td>
</tr>
<tr>
<td>4.3.3 Questionnaire Identification</td>
<td>76</td>
</tr>
<tr>
<td>4.4 Data Processing</td>
<td>77</td>
</tr>
<tr>
<td>4.4.1 Relative Weight Alternative</td>
<td>78</td>
</tr>
<tr>
<td>4.4.2 Innerdepedence</td>
<td>93</td>
</tr>
<tr>
<td>4.4.3 Relative Weighted Criteria Analysis</td>
<td>100</td>
</tr>
<tr>
<td>4.4.4 Ideal Solution Analysis</td>
<td>112</td>
</tr>
<tr>
<td>4.4.5 Fuzzy ANP and Fuzzy ANP TOPSIS result comparation analysis</td>
<td>122</td>
</tr>
<tr>
<td>4.5 Design and Development</td>
<td>124</td>
</tr>
<tr>
<td>4.5.1 Decision Support System Design</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1 Continuum of Information System Product (Jao, 2010) 10
Figure 2.2 Nature of Decision Making (Batty, 2013) .. 12
Figure 2.3 The Choice Process (McFadden, 2001) .. 17
Figure 2.4 Model of career choice (Schunk, 2012) .. 19
Figure 2.5 Basic Architecture of Decision Support System (Burstein & Holsapple, 2008) ... 30
Figure 2.6 Comparison of Linear Hierarchy and Network Feedback (Ascarya, 2005) ... 33
Figure 2.7 Membership function cure for rating scale (Büyüközkan & Çifçi, 2012) ... 42
Figure 2.8 Phases in the WebML development process (Brambilla, Comai, Fraternali, & Matera, 2008) ... 49
Figure 2.9 Development method evaluation:information and functional aspects (Domingues, Bianchini, Re, & Ferrari, 2008) ... 52
Figure 2.10 Node.Js processing model (Jorge, 2015) .. 58
Figure 3.1 Research methodology .. 61
Figure 3.2 Web Methodology Language .. 65
Figure 3.3 Fuzzy ANP Hierarchy .. 68
Figure 4.1 Preliminary Screening .. 73
Figure 4.2 Network Structure of Majorio ... 77
Figure 4.3 ANP network in Majorio .. 78
Figure 4.4 The example of second stage questionnaire ... 78
Figure 4.5 Fuzzy ANP result analysis .. 123
Figure 4.6 Fuzzy ANP TOPSIS analysis ... 124
Figure 4.7 Majorio system design ... 125
Figure 4.8 Majorio system architecture .. 126
Figure 4.9 Majorio model management flowchart 127
Figure 4.10 Sitemap of user interface design ... 129
Figure 4.11 Login wireframe of majorio ... 129
Figure 4.12 Registration wireframe of majorio ... 130
Figure 4.13 Main page wireframe .. 131
Figure 4.14 Test page wireframe of majorio .. 132
Figure 4.15 Test result wireframe of majorio ... 132
Figure 4.16 History wireframe of majorio .. 133
Figure 4.17 Conceptual database of majorio ... 133
Figure 4.18 Logical database .. 135
Figure 4.19 Physical Database ... 136
Figure 4.20 Use case diagram majorio .. 137
Figure 4.21 Activity diagram majorio ... 141
Figure 4.22 Registration sequence diagram ... 143
Figure 4.23 Login sequence diagram ... 144
Figure 4.24 Quiz sequence diagram ... 145
Figure 4.25 Previous result/history sequence diagram 146
Figure 4.26 Logout sequence diagram .. 147
Figure 4.27 Class diagram of Majorio ... 148
Figure 4.28 Object diagram of Majorio ... 149
Figure 4.29 Deployment diagram Majorio.. 150
Figure 4.30 Test Case Planning Template (Williams, 2010) 151
Figure 4.31 Interval scale .. 154
Figure 4.32 Welcome page .. 158
Figure 4.33 Registration page ... 159
Figure 4.34 Login page .. 159
Figure 4.35 Main page ... 160
Figure 4.36 Test page .. 160
Figure 4.37 Result page .. 161
Figure 4.38 History page ... 161
LIST OF TABLE

Table 2.1 Type of decision structure (Burstein & Holsapple, 2008) 15
Table 2.2 Curriculum structure for primary school (Kementrian pendidikan dan kebudayaan, 2012) ... 21
Table 2.3 Curriculum structure for junior high school (Kementrian pendidikan dan kebudayaan, 2012) ... 22
Table 2.4 Compulsory curriculum structure for high school (Kementrian pendidikan dan kebudayaan, 2012) ... 23
Table 2.5 Specialization and elective curriculum for high school (Kementrian pendidikan dan kebudayaan, 2012) ... 23
Table 2.6 ANP level of importance (Zhang, 2015) .. 34
Table 2.7 Random Index ... 37
Table 2.8 Fuzzy scale linguistic variable (Yayin, 2011) 41
Table 2.9 The Summary of MCDM Methods (Velasquez & Hester, 2013) 45
Table 2.10 Development methods (Domingues, Bianchini, Re, & Ferrari, 2008) 51
Table 2.11 Comparing OODBMS and RDBMS as far as data modeling is concerned (Gheorghe, 2007) ... 53
Table 2.12 Comparing OODBMS with RDBMS considering their objectives 54
Table 2.13 Advantages and Disadvantages of DOD over RDBMS (Nayak, Poriya, & Poojary, 2013) ... 56
Table 3.1 Majorio Criteria .. 68
Table 3.2 Relationship of Alternative and Criteria 69
Table 4.1 Average weight recap of each criterion 74
Table 4.2 Comparison between W_i and R_δ 75
Table 4.3 The result of weighted average comparison of fuzzy after elimination 75
Table 4.4 Pairwise criterion comparison matrix of Management school 80
Table 4.5 Fuzzification of Management school .. 82
Table 4.6 Pairwise comparison defuzzification of Management School 84
Table 4.7 Supermatrix of Management School ... 86
Table 4.8 Limiting Supermatrix of Management school 88
Table 4.9 The difference between 1st and 2nd eigenvector of Management school .. 88
Table 4.10 Consistency Rate of Management School 92
Table 4.11 Pairwise comparison of Innerdependence 93
Table 4.12 Fuzzification of Innerdependence matrix 94
Table 4.13 Defuzzification of Innerdependence matrix 95
Table 4.14 Weighted Supermatrix of Innerdependence 96
Table 4.15 Limiting Supermatrix of Innerdependence 97
Table 4.16 The difference between 1st and 2nd eigenvector 97
Table 4.17 Consistency Ratio of Innerdependence matrix 98
Table 4.18 Parameters for subject Bahasa Indonesia 100
Table 4.19 Parameters for subject Mathematics .. 100
Table 4.20 Parameters for subject Science .. 101
Table 4.21 Parameters for subject Social Science 101
Table 4.22 Parameters for talent Linguistic .. 101
Table 4.23 Parameters for talent Linguistic .. 102
Table 4.24 Parameters for talent Visual Spatial ... 102
Table 4.25 Parameters for talent Logics ... 103
Table 4.26 Parameters for talent Interpersonal .. 103
Table 4.27 Parameters for talent Science ... 103
Table 4.28 User test input ... 104
Table 4.29 Pairwise comparison by User test ... 105
Table 4.30 Fuzzification of User matrix ... 105
Table 4.31 Defuzzification of User matrix .. 107
Table 4.32 User Weighted Supermatrix ... 108
Table 4.33 User Limiting Supermatrix .. 109
Table 4.34 The difference between 1st and 2nd eigenvector of User supermatrix ... 109
Table 4.35 Consistency Ratio of User matrix ... 110
Table 4.36 Overall Weight Criteria of User test case 112
Table 4.37 Recap of alternatives weight ... 113
Table 4.38 TOPSIS decision matrix .. 114
Table 4.39 The sum of each column and average mean 115
Table 4.40 Normalized decision matrix .. 116
Table 4.41 Normalized weighted decision matrix .. 116
Table 4.42 Positive and negative ideal solution .. 117
Table 4.43 Proximity of ideal positive solution .. 119
Table 4.44 Proximity of ideal negative solution .. 120
Table 4.45 Relative distance of each alternatives 121
Table 4.46 Alternatives ranking and recommendation based on relative distance .. 121
Table 4.47 Alternatives Ranking from Fuzzy ANP 122
Table 4.48 Entity Description ... 134
Table 4.49 Login use case description ... 138
Table 4.50 Account registration use case description 138
Table 4.51 Take test use case description ... 139
Table 4.52 History use case description .. 140
Table 4.53 Logout use case description .. 140
Table 4.54 Majorio Blackbox Test .. 151
Table 4.55 User Acceptance Test .. 152
Table 4.56 Interval scale categories .. 154
Table 4.57 Accuration test between Majorio and spreadsheet 156
Table 4.58 Development and Implementation tools of Majorio 157
LIST OF EQUATIONS

(2.1) ... 36
(2.2) ... 36
(2.3) ... 36
(2.4) ... 38
(2.5) ... 39
(2.6) ... 39
(2.7) ... 40
(2.8) ... 40
(2.9) ... 40
(2.10) .. 40
(2.11) .. 40
(2.12) .. 41
(2.13) .. 42
(2.14) .. 43
(2.15) .. 44
(2.16) .. 44
(2.17) .. 44
(2.18) .. 44
(2.19) .. 44
(2.20) .. 44
(2.21) .. 47
ABBREVIATIONS LIST

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytical Hierarchy Process</td>
</tr>
<tr>
<td>ANP</td>
<td>Analytical Network Process</td>
</tr>
<tr>
<td>BSC</td>
<td>Balanced Scorecard</td>
</tr>
<tr>
<td>BOCR</td>
<td>Benefit Cost Opportunity Risk</td>
</tr>
<tr>
<td>BEER</td>
<td>Building Energy Efficiency Retrofit</td>
</tr>
<tr>
<td>CCS</td>
<td>Cascading Style Sheets</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CHP</td>
<td>Cognitive Hierarchy Process</td>
</tr>
<tr>
<td>CI</td>
<td>Consistency Index</td>
</tr>
<tr>
<td>DFD</td>
<td>Data Flow Diagram</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
</tr>
<tr>
<td>DOD</td>
<td>Document Oriented Database</td>
</tr>
<tr>
<td>E-commerce</td>
<td>Electronic-commerce</td>
</tr>
<tr>
<td>EPC</td>
<td>Engineering, Procurement and Construction</td>
</tr>
<tr>
<td>ERD</td>
<td>Entity Relationship Diagram</td>
</tr>
<tr>
<td>E-R</td>
<td>Entity-Relationship</td>
</tr>
<tr>
<td>EIS</td>
<td>Executive Information Systems</td>
</tr>
<tr>
<td>ES</td>
<td>Expert Systems</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>FANP</td>
<td>Fuzzy Analytical Network Process</td>
</tr>
<tr>
<td>HDM</td>
<td>Hierarchical Development Methodology</td>
</tr>
<tr>
<td>HTML</td>
<td>Hyper Text Markup Language</td>
</tr>
<tr>
<td>PHP</td>
<td>Hypertext Preprocessors</td>
</tr>
<tr>
<td>IA</td>
<td>Intangible Assets</td>
</tr>
<tr>
<td>IC</td>
<td>Intellectual Capital</td>
</tr>
<tr>
<td>JSON</td>
<td>JavaScript Object Notation</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>KSO</td>
<td>Key Strategic Objectives</td>
</tr>
<tr>
<td>KS</td>
<td>Knowledge System</td>
</tr>
<tr>
<td>KD</td>
<td>Kompetensi Dasar</td>
</tr>
<tr>
<td>KI</td>
<td>Kompetensi Inti</td>
</tr>
<tr>
<td>K-13</td>
<td>Curriculum 2013</td>
</tr>
<tr>
<td>LS</td>
<td>Language System</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information System</td>
</tr>
<tr>
<td>MVC</td>
<td>Model-View Controller</td>
</tr>
<tr>
<td>MAUT</td>
<td>Multi-Attribute Utility Theory</td>
</tr>
<tr>
<td>MCDA</td>
<td>Multiple-Criteria Decision Analysis</td>
</tr>
<tr>
<td>MCDM</td>
<td>Multiple-Criteria Decision Making</td>
</tr>
<tr>
<td>OO</td>
<td>Object Oriented</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>OODBMS</td>
<td>Object Oriented Database Management System</td>
</tr>
<tr>
<td>OO-H</td>
<td>Object Oriented Hypermedia</td>
</tr>
<tr>
<td>OOP</td>
<td>Object Oriented Programming</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PS</td>
<td>Presentation System</td>
</tr>
<tr>
<td>PPS</td>
<td>Problem Processing System</td>
</tr>
<tr>
<td>RI</td>
<td>Random Index</td>
</tr>
<tr>
<td>RDMS</td>
<td>Relational Database Management System</td>
</tr>
<tr>
<td>RMM</td>
<td>Relationship Management Methodology</td>
</tr>
<tr>
<td>REST</td>
<td>Representational State Transfer</td>
</tr>
<tr>
<td>SDLC</td>
<td>Software Development Life Cycle</td>
</tr>
<tr>
<td>SA</td>
<td>Structured Analysis</td>
</tr>
<tr>
<td>TOPSIS</td>
<td>Technique for Order Performance by Similarity to Ideal Solution</td>
</tr>
<tr>
<td>TPS</td>
<td>Transaction Processing System</td>
</tr>
<tr>
<td>TFN</td>
<td>Triangular Fuzzy Number</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>UB</td>
<td>Bakrie University</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
<tr>
<td>WAE</td>
<td>Web Application Extension</td>
</tr>
<tr>
<td>WDLC</td>
<td>Web Development Life Cycle</td>
</tr>
<tr>
<td>WISDM</td>
<td>Web Information System Development Methodology</td>
</tr>
<tr>
<td>WebML</td>
<td>Web Modelling Language</td>
</tr>
</tbody>
</table>
APPENDIX LIST

Appendix 1 : First Questionnaire (Open Questionnaire) 171
Appendix 2 : Preliminary Study (Interview with Ms. Ananda) 201
Appendix 3 : Software Requirement Specification .. 205
Appendix 4 : Second and Third Questionnaire ... 213
Appendix 5 : Sixteen Criteria Identification ... 214
Appendix 6 : Relative Weight Alternative .. 222
Appendix 7 : Relative Weight Fuzzification .. 229
Appendix 8 : Defuzzification of Pairwise comparison 239
Appendix 9 : Supermatrix ... 246
Appendix 10 : Limiting Supermatrix .. 256
Appendix 11 : Consistency Ratio of Criteria ... 269
Appendix 12 : Accuration Test ... 279
Appendix 13 : Testing Documentation ... 286