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Response of Plate on Elastic Foundation
Under Harmonic Moving Load

P R Maiti*, Rohit Saha** and Sofia W Alisjahbana®**

The vibration of plate rested on foundation to moving load is a problem of great
importance in structural dynamics. This paper investigates the dynamic analysis of
a finite plate resting on an elastic foundation subjected to traversing point load of
harmonic nature, assuming the velocity of load to be constant. The foundation has
been modeled as Winkler foundation. Formulations are developed in the transformed
field domain using: (1) a double Fourier transform in space; and (2) Laplace Carson
integral transform in time domain for steady state response to harmonic moving
load. The effect of the speed of the moving load, the foundation stiffness and the
dynamic amplification factor are evaluated. The paper also investigates the effect of
load frequency on the deflected shapes, and the maximum displacement.

Key Words: Winkler Foundation, Moving Harmonic Load, Velocity, Frequency

Introduction

The investigation of dynamic behavior of plate structures under moving loads has
been a topic of interest for well over a century for the design of bridge decks and
pavements. Such structures are often subjected to moving loads of high speed
vehicles. The design of pavements or decks is traditionally based on the analytical
solution of an infinitely long beam or plate under an equivalent static load.
Such design methods are deficient as the dimensions of such structure are finite
while the moving vehicles exert dynamic load of various amplitudes due to the
mechanical vibrations of their engines. Hence, the behavior of structures under
moving loads is different from that of static loads. The load amplitude of moving
loads is often assumed to be constant. However, the moving loads created by vehicles,
in fact, have variations in load amplitude with time that result from the pavement
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surface roughness and the mechanical systems of the vehicles. In addition,
non-destructive testing vehicles such as rolling dynamic deflectometers apply
a steady state harmonic force while continuously moving. Barros and Luco (1992)
used moving Green’s function to find the response of layered visco-elastic half space
to moving and line loads with constant velocity. Zaghloul and White (1993) used
a three-dimensional finite element method to find the response of pavement to
moving loads. Most of the studies have been conducted for moving loads with
constant amplitudes. However, the loads may be harmonic, transient, and random
or impact type due to variations in amplitude with time, as a result of many factors
like roughness of top surface and mechanical vibrations of the engine of the vehicle
(Kim et al., 1995). The dynamic response of plates resting on an elastic foundation
has attracted much less attention in comparison to moving loads on decks.
The limited investigations involved analytical procedures for plates with simple
and regular boundary conditions. Gbadeyan and Oni (1992) gave a closed form
solution using double Fourier sine integral transformation to analyze a simply
supported rectangular plate resting on an elastic pasternak foundation traversed by
an arbitrary number of moving concentrated masses. Static and free vibration
analyses of plates resting on an elastic foundation have been studied extensively,
for example, by Saha (1997) and Pevzner et al. (2000). Kim and Roesset (1998)
investigated an infinite plate resting on an elastic Winkler foundation subjected to
moving loads with transformed field domain analyses using Fourier transform.
Huang and Thambiratnam (2002) had investigated the dynamic response of plates
on elastic foundation subjected to moving loads using the finite strip method and a
spring system. In the numerical analysis, the Wilson-0 method was adopted for
direct integration. Extensive studies of the dynamic response of plates supported
by an elastic foundation with simply supported and unsymmetrical boundary
conditions were investigated by Alisjahbana and Wangsadinata (2005 and 2006)
using Modified Bolotin Method (MBM). Maiti (2001) solved the plate problem
resting on an elastic foundation using Laplace Carson Integral transforms.
Maiti and Saha (2006) applied the same technique for solving plate vibration
subjected to harmonic loads.

This paper presents an approach that uses Fourier sine integral transforms and
Laplace Carson integral transforms to discuss the dynamic response of plate resting
on an elastic foundation with moving harmonic concentrated load. Moving loads,
in practice, are distributed over a finite area; the point load represents only an
idealization. The geometry and material properties were assumed t0 be linear elastic,
and the plate in consideration to be of finite dimensions. The analysis has been
carried out in detail for simply supported thin plate with stress-free edges;
however, the final formulae with other boundary conditions are also presented.
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This technique is flexible and can be easily extended for analysis of plates with
various boundary conditions, carrying a moving mass exerting harmonic load. Finally,
the results for dynamic response such as deflection, bending and twisting moment,
and shear force of the plate are presented with the effects of load velocity and load
frequency. In addition, the Dynamic Amplification Factor (DAF) is also discussed.

2. Mathematical Model

We consider a rectangular isotropic plate with a moving mass exerting harmonic
load with simply supported edges parallel to X-axis—a moving body with negligible
inertia is moving parallel to X-axis with velocity V as shown in Figure 1.

Figure 1: Moving Load on a Plate Rested on Winkler Foundation
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The governing differential for a system without damping, neglecting rotatory
moments of inertia and shear deformation according to the classical theory of plates
can be written as:

tw(x,y,) twx,y,t) *wix, ¥,t)
D ax4 +2 ax28y2 Gl ay4 +KW(XJJ’,I)

9° w(x,y,t)

+it
ot?
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In Equation 1, x and y are the Cartesian coordinates and the plate lies on
the X-Y plane, w is the lateral deflection of the plate which is a function of x, y and
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time ¢, and M is the mass per unit area of the plate; D = Eh%/12(1 - v?) is the flexural
stiffness of the plate, where E is the Young’s modulus of the plate, and h is the
thickness of the plate; P(x, y, t) is the external dynamic load per unit area acting
normal to the surface of the plate.

2.1 Boundary Conditions
For simply supported rectangular plate of sides Ix and ly, the boundary conditions

on w are the initial conditions, i.e., at t = 0:

w(x,y,0)=0; a—w%x;y;t)ﬂ) (2D

?w  FPw
v

w=0; ——+ =0 atx=0and x=Ix :
-y P ..(3)
%w  Pw

w=0; +v¥——=0 atx=0and y=1{
Ay 9 y=ly .4

2.2 Transformations

For the above boundary conditions, it is convenient to use the two dimensional
Fourier sine integral transformations:

— i
w(x,y,r)=§ 2; Ty Wi, j,¢t) sin—>x lx ley i

where, W (i, j, t) is the transformation of w(x v, t). Thus:

i 0 *w inx jny i‘nt
'(l;-([ T sin » sin - dxdy = o W, j,0) ...(6)
Ix ly 4 % i .2 2 4
a'w . imx . jmy i“j“n i
BI. ‘([ axzayz n bc s ly dXdy lxzz 2 W(l,],f) .(7)
e by g4 ; ; 44
: d'w . imx . jny J'n v %
sin sin dxdy = W(a,j,t
!! 3y I Ty dy " G.j,0) ..(8)

The external load p(x, y, t) can be expressed in the form of the Dirac-Delta function: .
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p(x, y, £) = P(t)6 (x—vt) 6 (x-vt) 6 (y—1) ..(9)
where, & (x) is the Dirac function and P(t) = asin ot

fsinally, after the transformation of Equation 1 using Equations 5 to 9, W(i, j, t)
can be written as:

W(i,j,0) + @3 W(i,j,t) = ? sin @, t sin % ..(10)
where,
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P(t) = a,cos ax
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W(:,J,t)+m§,-W(1,1,t) = 2—Ny" (sin(@, +@)t+sin(w, —w)t)

Then, Laplace Carson integral transform is carried out on Equation 10, which can

be written as:

“°Si“jzﬂ 1 (@+®.) (@, )
Y [p i S el } (11
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W (i,j,p) =

where, W* (i, j, p) is the Laplace Carson transformations of deflection W (i, j, t).

The inverse of Laplace Carson integral transform of Equation 11 can be written as:

. . 1 - ~ . [Jj%N (w+w,) sin(d)+co )t sinwyt
W(,j,t)= —a sin x -
! 2p 02 2, [ ly J[a)ﬁ—(m+wx)2 (0+o,) o

i=1 j=1 ij

(0, —w) sin(w, —@)t  sinw;t
o R S ..(12)
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transform of Equation 12 is taken as:

In orJe to ngam in-field of x and y coordmates the inverse sine Fourier integral

by )| o} -(w+w,)?

(w+w,)

wix,y,t) = 2 aoiim(fnl)[ (w+@,) [sin(anmx)'t sinmijt}

(@, —w) @

(0, -w) (sin(a)x—w)t Siﬂwﬁfﬂsmiﬁx _jry
i

And the corresponding bending moment of the plate:

mpa%os 207 (v on (222).
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3. Numerical Example

Let us consider a finite length plate rested on elastic foundation with the soil stiffness
value k = 3.5 x 106 N/m?, plate length [x = 100 m and breadth ly = 20 m, thickness
" h=0.3m,v = 0.25 m = 355 kg/m? E = 3.1 x 10'°N/m? The DAF is the ratio of
the displacement of the plate with the maximum static displacement for a particular

loading and plate dimension.

The dynamic displacement response of the plate rested on elastic foundation,

when subjected to moving load with harmonic amplitude variation, is investigated.
The maximum displacements under a moving harmonic load are examined for various
values of the velocity and load frequency.

Figure 2 shows the displacement response of the plate when a moving load
of magnitude 10 kN is moving with a constant velocity of 20 m/s through the plate.
It is observed that maximum deflection and bending moment occur when the load
reaches the central point of the plate (Figures 3-5).

Figure 6 shows that the displacement of the plate changes with the change of
foundation stiffness. As the stiffness of the foundation increases the displacement
response decreases. From Figure 7, it is observed that on increasing the load
frequency and load velocity, the displacement of the plate increases.

Figure 2: Displacement History Graph
at Central Point for P,=10 kN and v = 20 m/s
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Figure 3: Moment History Graph
at Central Point Along X-Direction
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Figure 4: Displacement History
of Bending Moment, My, at Central Point
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Figure 5: Twisting Moment History of Plate Computed
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Figure 6: Dynamic Amplification Factor History for Different Values

of Foundation Stiffness
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S Figure 7: Bynamlc A—mpliﬁcation Factor for Different Load Frequencies
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In Figure 8, Mx and My is plotted for different values of load velocity (V). It is
observed that the moment in the y-direction (My) is higher than the moment in the
x-direction (Mx), and both the moments increase as the load velocity increases.
Figure 9 shows that twisting moment increases slowly at lower load velocities and
at a very high rate at higher load velocities.

f Figure 8: Mx and My as a Function of Load Velocity (V)
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Figure 9: Twisting Moment (Mxy) as a Function of Load Velocity (V).
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The DAF for displacement of the plate is harmonic in nature as the loading
applied is harmonic. From Figure 10, it is observed that the variation of DAF
increases with increasing load. There is some critical velocity at which maximum
deflection occurs due to moving load. Here, it is observed that maximum deflection
occurs at around the load velocity, 300 m/s.

Figure 10: DAF as a Function of Load Velocity
for Different Values of Foundation Stiffness
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, Figure 11, DAF has been plottﬂdrfg lower load velocities of 10 m/s, 20 m/s
' 'and, 40 m/s mth.dlfferent loadmg frequencies. The variation of load frequency is
changmg the dynamlc response with same gradient. Figure 12 shows that the DAF
for higher load velocities becomes periodic in nature, with increasing the load
frequency.

Figure 11: DAF as a Function of Load Frequency at Lower Velocities
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Figure 12: DAF as a Function of Load Frequency Comptited
at High Velocity Values
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velocity, respectively, along the plate length The variation of moment Mx, My and
Mxy along the plate length has been plotted in Figures 15 and 16. The deflected®

Figure13: Variation of DAF Along the Plate Length
for Different Values of Foundation Stiffness
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Figure14: Variation of DAF Along the Longitudinal Direction of Plate
for Different Values of Velocity
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Figurels Variat‘l_onééggg‘ntral Point Moment
~ Along Longitudinal Direction
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shape of the entire plate at a particular load velocity, 50 m/s, and load frequency,
50 rad/s, has been plotted in Figure 17.
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Figure17: Total Deflected Shape of the Plate Subject :
to a Moving Load Computed att = 2.55 .
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Conclusion

The dynamic response of a finite plate rested on Winkler foundation subjected to
moving harmonic load has been investigated using sine Fourier integral
transformation in space, and Laplace Carson integral transform in time domain.
The formulation neglected the effects of rotatory inertia and transverse shear
deformation; it cannot produce surface waves propagating along the plate.
The DAF of the plate is determined for different loading conditions and load velocities.
The results show that the effect of foundation stiffness and load velocity is an
important parameter for deflection of the plate under dynamic conditions. @&
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