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a b s t r a c t

A simple and easy algorithm is presented for a fast calculation of kernel functions which are required in
fluid simulations using the Smoothed Particle Hydrodynamic (SPH) method. The present proposed algo-
rithm improves the Linked-list algorithm and adopts the Pairwise interaction technique, both of which
are widely used for evaluating kernel functions in fluid simulations using the SPH method. The proposed
algorithm is easy to implement without any complexities in programming. Some benchmark examples
are used to show the simulation time saved by using the proposed algorithm. Parametric studies on
the number of divisions for sub-domains, ratios between the sub-domain size and smoothing length
and total amount of particles are conducted to determine the range of applicability and effectiveness
of the proposed technique. A handy formulation which relates the ratio between the sub-domain size
and smoothing length and the total amount of particles used in the simulation using the SPH method
is proposed for practical usage.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The Smoothed Particle Hydrodynamic (SPH) method which was
first introduced [1,2] for modeling astrophysical phenomena is one
amongst many particle methods that has been used for simulating
the physical behavior of fluid and continuum solid bodies. Recent
progress in using the SPH method has been applied in the fields
of fluid and solid interaction [3,4], multi-phase fluids and free sur-
face flows [5]. In the SPH method, the so-called smoothing function
or kernel function which is based on particle approximation plays a
very important role in carrying out the integration of governing
partial differential equations within the supporting domain.

One of the important issues for implementing the SPH method
using the particle approximation is how to perform effectively the
evaluation of kernel functions based on a set of particles scattered
in an arbitrary manner. A lot of effort has been made to improve
the governing equations used in the simulations and variation of
kernel functions, as summarized in [6]; however, little research
work has been done in enhancing the technique to carry out the
interaction among particles in the supporting domain.

Since the SPH method was introduced, three well-known parti-
cles search algorithms have been widely used in the evaluation of
kernel functions. They are: the all particles searching method; the
Linked-list technique; and the Hierarchical Tree technique.

The simplest of these algorithms is the all particles searching
method. The search is performed at a particle to find another par-
ticle inside its supporting domain within the entire simulation
domain. The searching process is necessary at every time step,
and thus the computation effort required for this all particles
search method is very time-consuming, and not feasible for prob-
lems with very large amounts of particles.

The Linked-list technique was introduced in [7] before the SPH
method was invented, and the technique is still being widely used
to perform the SPH method. The Linked-list algorithm uses
uniform meshes for particle bookkeeping with the size of jh where
jh is the radius of the compact support domain of the kernel func-
tion. Thus, all particles in the neighboring sub-domains can then
contribute to the properties of particles in the sub-domain. An
improvement was made in [8], where a cylindrical sub-domain is
used as a particle bookkeeping device to simulate shocks in accre-
tion disks. However, the cylindrical domain will lose its capability
to cover an arbitrary simulation domain which is not circular, in
general problems. Unlike a rectangular sub-domain, the cylindrical
sub-domain leaves the four corners of its bounding rectangle
untouched, and therefore overlapping between cylindrical sub-
domains for particle bookkeeping is required, which makes this
technique less effective.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.08.004&domain=pdf
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Hierarchical Tree coding has also been widely used [9–11].
However, due to the complexity in implementing the algorithm,
this technique has not gained any popularity in practice. In [12],
the application of Hierarchical Tree coding was used in parallel
programming to boost its performance; nevertheless, the efforts
add further complexities when adopting the algorithm proposed.

In this study, a simple and easy algorithm based on the creation
of fixed sub-domains and their outlines is presented for a faster
calculation of kernel evaluations, as is required in simulations
using the SPH method. The proposed technique is based on the
same concept as the Linked-list, but the sub-domain width does
not need to be jh. In most simulation problems, the value of jh
is very small compared to the whole simulation domain. Paramet-
ric studies conducted have shown that too small a sub-domain size
could result in a considerable increase of the computation time. For
easy use, the size of the sub-domain is determined by equally
dividing the entire domain of simulation by an integer. The pro-
posed technique is then further facilitated by the Pair-Wise Inter-
action method to register all the particles within the outlined
sub-domain which contribute to the particles inside the sub-
domain where the kernel functions are being evaluated.

Previous study [13] in internuclear distance calculations
between atoms in cells inside molecular simulations also pointed
out a growing computation time when the sub-divisions were
increased. The so-called off-mapping algorithm was introduced
to reduce unnecessary internuclear distance calculations for larger
and complex systems. However, the study did not recommend the
appropriate condition for applying the technique neither proposed
any concrete solution for practical usage.

The outline of the paper is as follows. First, the SPH formulation
for Navier–Stokes equation is highlighted. Second, the outlined
sub-domain technique is explained. Third, verifications of simula-
tion results were conducted for some benchmark problems. Fourth,
parametric studies by changing the number of particles were done
to observe the varying computation times. A fifth, a handy formu-
lation was established for practical usage. Finally, the effectiveness
of the formulation was used for are presented.

2. SPH formulation for Navier–Stokes equations

SPH can be considered as a kind of interpolation method for
interactions of arbitrary particles in a support domain inside the
fluid simulation system [14]. In the present study, the SPH method
is used for solving Navier–Stokes equations problems. Fig. 1 shows
a typical kernel function W. The kernel function used in this study
was taken from the cubic spline family [15], which is known as a B-
spline function, as given in Eq. (1).
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Fig. 1. Support domain of the kernel function W of particle i.
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where n = 2r/d, r is the distance between two nodes, d is the radius
of the supporting domain which is given by d = jh, j is a multiplier
factor, h is the smoothing length and a1 = 2/d, a2 = 60/7pd2, a3 = 12/
pd3 for one-, two- and three-dimensional space respectively.

For the conservation of mass governing equation, the particle
approximation of density can be expressed as
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where qi is the density of particle i, mj is the mass of particle j,
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j is the relative velocity between particles i and j.
For the conservation of momentum and energy, the particle

approximation of momentum and energy governing equations,
taking into account artificial viscosity, are given as
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where ri, rj are the stresses for particles i, j, Pi, Pj are the pressures
at particles i, j, ei is the viscous strain rate for particle i, li is the
dynamic viscosity for particle i, and the artificial viscosity

Q
ij

[16,17].
There have been many variations of the governing equations,

and these are summarized in [6]. Regardless of the governing equa-
tions being used in the SPH simulations, the present technique is
generally applicable and effective for evaluating the kernel
functions.

3. Outlined sub-domain technique

The proposed algorithm improves the Linked-list algorithm by
allowing an arbitrary spacing for the fixed sub-domains and outlin-
ing the sub-domain with the jh width to guarantee that interact-
ing particles are taken into account in the calculations.

The proposed technique uses the Pairwise interaction technique
[11,18,19] as a particle bookkeeping device that is adopted by lim-
iting the search for interacting particles within each sub-domain.
The Pairwise interaction technique is carried out with the process
of searching for the nearest neighboring particle and stores the
necessary data for the SPH summation process. By dividing the
whole of the simulation domain into equal size sub-domains, the
time needed for storing particle data becomes longer, but the time
required for searching for the nearest neighboring particle is
reduced, which results in a considerable total time saving.

To illustrate the present outlined sub-domain technique, a sche-
matic two-dimensional arbitrary domain as shown in Fig. 2 is
adopted. The whole simulation domain is first divided into smaller
rectangles and outlines the sub-domain of the rectangles. Each
rectangle is then used for registering all the particles inside the
area after each time step calculation. At the same time, an outer
rectangle outlining the inner rectangle is also used for particle reg-
istration. The width of the outer rectangle is determined from the
size of the inner rectangle increased by the radius d of the support
domain of kernel function W in both its width and height. There
are overlapping areas in the adjacent sub-domains due to this out-
line sub-domain technique, hence coverage of the compact support
of the kernel function from a particle at the edge of the inner sub-
domain is guaranteed.



Fig. 2. A 2D schematic representation of the outlined sub-domain technique.

Fig. 3. Outlined sub-domain scheme in the shock tube problem.
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In evaluating Eqs. (2)–(4), the summations of governing equa-
tions are accounted for each of Nin particles which were registered
in the inner rectangle using the index i. The nearest particle search-
ing for a particle i is sought among Nout particles with index j which
are registered within the outer rectangle domain.

Here, each particle inside the inner rectangle that is i indexed
acts as a center for evaluating the governing equations to interact
with the surrounding particles within the outer rectangle that are j
indexed. Hence, searching for interacting particles will only be
required inside the outer rectangle, which requires less time than
searching for a particle in the whole domain of simulation. The
reduction of computation time in the present technique depends
on the number of sub-domains, particles, and smoothing length.

The additional time required in the present technique is for reg-
istering all the particles inside the predefined sub-domains and
their outlined area to account for all particles at the utmost bound-
ary inside the sub-domains for calculation of kernel functions. Reg-
istration of particles into their sub-domains and the outlined area
is conducted after each time step calculation is finished. The pro-
cess of registration is repeated at all sub-domains within the sim-
ulation domain.

The following algorithm applies for the proposed outlined sub-
domain technique.

� Start CPU timing.
� Divide the whole simulation domain into equal divisions of sub-

domains in all dimensional direction(s).
� Start the simulation LOOP.
� Create link lists for each sub-domain:

– Registration 1: Nin particles inside a sub-domain.
– Registration 2: Nout particles inside the outlined sub-domain.
– Create a link list for the Nin particles to search from the Nout par-

ticles inside the support domain of kernel function W.
� Calculate the SPH formulation for the whole simulation domain

using the link lists created.
� Calculate the new step time value for next simulation.
� If not at the end of the loop, repeat the LOOP.
� Stop CPU timing.

As a final point, the proposed technique will considerably
improve the efficiency of the Pairwise interaction method by lim-
iting the sub-domain searching which is defined only by the over-
lapping of outline widths. The advantage of this method is that the
proposed number of divisions for sub-domains can significantly
reduce the required time evaluation for the same simulation to
the complexity of work in order O(aN). The value of a varies from
one tenth to a thousandth of fraction of the required simulation
time without division.
4. Verification of simulation results

Before conducting a parametric study, several benchmark prob-
lems are chosen to determine the applicability of the proposed
technique. As references for verifying the results of simulations
from the proposed technique, several benchmark problems were
selected from [6].

4.1. Shock tube 1D problem

The shock tube problem is a good one-dimensional benchmark
which has been frequently used by many researchers using the
SPH method [11,20]. The shock tube is a long straight tube filled
with gas, which is separated by a membrane into two equal parts
each of which is initially in an equilibrium state of constant pres-
sure, density and temperature. When the membrane is taken away
suddenly, a shock wave, a rarefaction wave and a contact disconti-
nuity will be produced.

The dimensionless initial conditions of the simulation are sim-
ilar to [11], then introduced by [20] which were taken from [21],
for x 6 0 (q = 1; m = 0; e = 2.5; p = 1; Dx = 0.001875) and for x > 0
(q = 0.25; m = 0; e = 1.795; p = 0.1795; Dx = 0.0075). Here, q, p, e
and m are the density, pressure, internal energy and velocity of
the gas, respectively. Dx is the space between two particles. A con-
stant time step of 0.00015 is used for a 1000-step calculation. A
constant smoothing length h = 0.015 and multiplier factor j = 2
are used in this simulation. Fig. 3 shows the scheme of the outlined
sub-domain technique applied to the shock tube problem.

In Fig. 3, M is the number of divisions, L is the sub-domains
length, d is the outlined width, and ‘ is the entire length of the sim-
ulation domain.

There were 400 particles used in the simulation. 320 particles
are evenly distributed in the high-density region and 80 particles
are evenly distributed in the low-density region. Figs. 4–7 show
the density, pressure, velocity and internal energy distribution
along the x-axis, respectively. The square box markers are the ref-
erence solutions obtained from the execution of codes provided in
[6] using the Pairwise interaction method for particle interactions.
The circle markers are the solution obtained after the augmenta-
tion of the present outlined technique using 4 equal divisions along
the x-axis.

From the results, it can be concluded that the results by using
the proposed technique fit exactly with the reference solutions
without any discrepancies found. The purpose of this verification
is to show that the augmentation of the present outlined technique
does not influence the results obtained.

4.2. Shear driven cavity 2D problem

The classical shear driven cavity problem is the fluid flow
within a closed square rectangle generated by moving the top side
of the rectangle at a constant velocity while the other sides remain
fixed. The flow will reach a steady state and form a recirculation
pattern. In the simulation, the dimensions of the kinetic viscosity
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Fig. 4. Density distribution in the shock tube at t = 0.20 s.
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Fig. 5. Pressure distribution in the shock tube at t = 0.20 s.
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Fig. 6. Velocity distribution in the shock tube at t = 0.20 s.
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Fig. 7. Internal energy distribution in the shock tube at t = 0.20 s.

B.S. Gan et al. / Computers & Fluids 104 (2014) 20–29 23
and density are m = 10�6 m2/s and q = 103 kg/m3 respectively. The
top side of the rectangle moves at a velocity of V = 10�3 m/s, thus
the Reynolds number for this problem is one. A constant time step
of 5 � 10�5 s is used. A constant smoothing length of 2.5 � 10�5 is
used. Fig. 8 shows the scheme of the outlined sub-domain tech-
nique applied to the shear driven cavity problem.

There were 1600 particles filling a square rectangle used in the
simulation. Figs. 9 and 10 show the vertical distribution velocities
along the horizontal centerline of the rectangle and the horizontal
d
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Fig. 8. Outlined sub-domain scheme in the 2D shear driven cavity problem.

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0

X (non-dimensional)

V
y /

 V
To

p

Pairwise Interaction
Outlined Technique

Fig. 9. Vertical velocities distribution along the horizontal centerline.
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Fig. 10. Horizontal velocities distribution along the vertical centerline.
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Fig. 13. Vy/Vxtop or Vy/Vztop distribution along the X or Z centerline direction.
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velocities distribution along the vertical centerline of the rectangle,
respectively. The square box markers are the reference solutions
obtained from the works of [6] using the Pairwise interaction
method for particle interactions. The circle markers are the solu-
tion obtained after the augmentation of the present outlined tech-
nique by using 4 equal divisions along both the x-axis and y-axis
directions. Both results are taken after 3000 steps at t = 0.15 s.

From the results, it can be concluded that the results by using
the proposed technique fit exactly with the reference solutions
without any discrepancies found. The purpose of this verification
is to show that the augmentation of the present outlined technique
does not influence the results obtained.

4.3. Shear driven cavity 3D problem

Since there is no benchmark available for a 3D problem, the shear
driven cavity 2D problem is extended to a 3D closed cube problem by
moving the top side of the cube at a constant diagonally 45 degree
velocity generated while the other sides remain fixed. By using the
same parameters as given in the 2D problem, the flow will reach a
steady state and form a recirculation pattern. In the simulation,
the dimensions of the kinetic viscosity and density are
m = 10�6 m2/s and q = 103 kg/m3 respectively. The top side of the
cube moves at velocities of V0x = 10�3 m/s and V0z = 10�3 m/s in the
x and z directions, respectively. A constant time step of 5 � 10�5 s
is used. A constant smoothing length of 2.5� 10�5 is used.

There were 64,000 particles filling a cube box used in the sim-
ulation. Figs. 12–14 show the orthogonal distribution velocities
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Fig. 11. Outlined sub-domain scheme in the 3D shear driven cavity problem.
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Fig. 12. Vz/Vztop or Vx/Vxtop distribution along the Z or X centerline direction.
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Fig. 14. Vx/Vxtop or Vz/Vztop distribution along the Y centerline direction.
along each axis centerline of the cube. By using the source code
provided in [6], the results of the simulations are compared with
the proposed technique. Both results are taken after 20 steps at
t = 0.001 s.

From the results, it can be concluded that the results by using
the proposed technique fit exactly with the reference solutions
without any discrepancies found. The purpose of this verification
is to show that the augmentation of the present outlined technique
does not influence the results obtained.

5. Parametric study using benchmarks

In the following examples, the timing evaluations were per-
formed on a personal computer with Core2Duo E7500 CPU, clock
rate of 2.93 Hz, FSB speeds of 1066 MHz and 4 GB memory of
RAM. A Fortran compiler was used to edit, modify, compile, debug
and run the source codes available from [6].

The execution time ratio is computed as

Execution time ratio ¼ tND

t1
ð5Þ

where tND is the required CPU timing evaluation obtained from
dividing the whole simulation domain into ND divisions; t1 is the
required CPU timing evaluation without dividing the whole simula-
tion domain, and ND is the number of equal divisions.

5.1. Shock tube 1D problem

The shock tube problem previously used for verifying the
results of the proposed technique is then adopted for the following
parametric study. The gas properties and parameters used in the
simulations for the parametric study are the same as the previous



Table 2
Parametric study for shear driven cavity 2D problem.

Case Number of particles
inside the square

Side length Computation steps

I 50 � 50 0.00125 1000
II 100 � 100 0.00250 1000
II 200 � 200 0.00500 1000
IV 1000 � 1000 0.02500 10
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data. In this parametric study, the length of the shock tube is fixed,
but the number of particles used in the simulation is varied by
adjusting the particle mass and smoothing length.

Table 1 shows three different numbers of particles used in the
study. The parametric study is conducted with the same initial per-
centage distribution of particles in two equal parts of the tube, that
is, 80% and 20% for the high-density and low-density regions. To
maintain a constant density in the tube, the length of the tube is
increased along with the increasing number of particles.

For each case of the three shock tubes shown in Table 1, the
total length of the tube is divided by vertical sub-domains which
result in 2, 4, 8, 16, 32, 64, 128 and 256 divisions.

Fig. 15 depicts the results of timing evaluation ratios by using
the proposed technique for the different total numbers of particles
in the simulation and an equal number of divisions of the vertical
sub-domains.

Fig. 15 shows the effectiveness of the proposed technique in
giving better results for larger numbers of particles used in the
simulation. Also shown in Fig. 15, for the total number of 100 par-
ticles in the simulation case, the time for registering the particles
became higher than for evaluating the kernel functions, resulting
in reduced effectiveness if the number of particles used in the sim-
ulation is few. However, the present technique shows good results
for the larger numbers of particles used; for 10,000 particles the
computation time can be reduced to less than 10% when the num-
ber of divisions of sub-domains is from 64 to 128.

5.2. Shear driven cavity 2D problem

The shear driven cavity problem previously used for verifying
the results of the proposed technique is then adopted for the fol-
lowing parametric study. The fluid properties and parameters used
in the simulations for the parametric study are the same as the pre-
vious data. In this parametric study, the size of the rectangle is
fixed, but the number of particles used in the simulation is varied
by adjusting the particle mass and smoothing length.

Table 2 shows four different numbers of particles used in the
simulation to show the effectiveness of the proposed technique.
Table 1
Parametric study for shock tube 1D problem.

Case Number of particles Total length

High density Low density

I 80 20 0.3
II 800 200 3.0
II 8000 2000 30.0
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Fig. 15. Results of execution time for 1D shock tube problem.
For each case of the four shear driven cavity problems shown in
Table 2, each side of the simulation domain is divided by vertical
and horizontal sub-domains of 2, 4, 8, 16, 32, 64 and 128 equal
divisions.

A similar tendency to the results from the shock tube problem is
seen, and the effectiveness of the present proposed outlined sub-
domain technique gives better results for larger numbers of parti-
cles used in the simulation. As shown in Fig. 11, for a lesser number
of particles, the time for registering the particles became higher
than for evaluating the kernel functions, resulting in reduced effec-
tiveness. The present technique shows even better results for lar-
ger numbers of particles used; as shown for 1000 � 1000
particles, a computation time of less than 1% can be achieved when
around 32 divisions of the sub-domains are used. However, further
increase of the number of divisions will result in a longer compu-
tation time.
5.3. Shear driven cavity 3D problem

The shear driven cavity problem previously used for verifying
the results of proposed technique is then adopted for the following
parametric study. The fluid properties and parameters used in the
simulations for the parametric study are the same as the previous
data. In this parametric study, the size of the cube is fixed, but the
number of particles used in the simulation is varied by adjusting
the particle mass and smoothing length.

Table 3 shows eight different numbers of particles used in the
simulation to show the effectiveness of the proposed technique.

For each case of the eight shear driven cavity problems shown
in Table 3, each side of the simulation domain is divided by vertical
and horizontal sub-domains of 2, 4, 8 and 16 equal divisions.

A similar tendency can be observed from the results, where the
effectiveness of the proposed outlined sub-domain technique gives
better results for larger total numbers of particles used in the sim-
ulation. As shown in Fig. 17, for smaller total numbers of particles,
the time for registering particles became higher than for evaluating
the kernel functions, resulting in reduced effectiveness. The pres-
ent technique shows even better results for larger numbers of par-
ticles used. As shown for 60 � 60 � 60 particles, reduction of the
computation time to less than 3% can be achieved when around
8 divisions of the sub-domain are used. However, further increase
of the number of divisions will result in longer computation time.
Table 3
Parametric study for shear driven cavity 3D problem.

Case Number of particles
inside the cube

Side length Computation steps

I 10 � 10 � 10 0.00100 1000
II 15 � 15 � 15 0.00100 1000
II 20 � 20 � 20 0.00100 1000
IV 25 � 25 � 25 0.00100 1000
V 30 � 30 � 30 0.00100 1000
VI 40 � 40 � 40 0.00100 1000
VII 50 � 50 � 50 0.00100 1000
VIII 60 � 60 � 60 0.00100 1000
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Fig. 16. Results of execution time for 2D shear driven cavity problem.
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Fig. 17. Results of execution time for 3D shear driven cavity problem.

Table 4
The most reduced execution time from parametric studies.

Case Number of particles L/h ratio ND

Shock tube 1D II 1000 9.563 1000
III 10,000 31.313 10,000

Shear driven cavity 2D I 50 � 50 9.375 50
II 100 � 100 12.500 100
III 200 � 200 18.750 200
IV 1000 � 1000 31.250 1000

Shear driven cavity 3D I 10 � 10 � 10 3.125 10
II 15 � 15 � 15 3.750 15
III 20 � 20 � 20 5.000 20
IV 25 � 25 � 25 5.469 25
V 30 � 30 � 30 5.682 30
VI 40 � 40 � 40 6.250 40
VII 50 � 50 � 50 7.031 50
VIII 60 � 60 � 60 7.485 60

ND  = 0.5 (L/h )2.4

Coefficient of Determination, R 2 = 0.8
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Fig. 18. Results of parametric studies with the greatest reduction time ratio.
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6. Proposal for practice

The effectiveness of the proposed technique in reducing the
execution time was found to depend on the dimensional type of
the problem, the number of particles in the simulations and the
number of divisions used in the simulations, as shown in Figs. 15–
17 from the parametric studies. For practical purposes, a simple
formulation that relates all the parameters used in the simulation
is to be established. A unique relationship between the number of
particles, the radius of the smoothing length and the number of
divisions is to be sought. From the results of the parametric studies
depicted in Figs. 15–17, the cases which are ineffective when using
the proposed technique are omitted. From each case, the number
of divisions where the execution time ratios give the lowest value
are collected and summarized in Table 4.

In Table 4, L is the size of the sub-domain; h is the smoothing
length; N is the total number of particles used in the simulation.
Here, ND is defined as ND ¼ N1nD, where D is the dimension of
the simulations type.

Fig. 18 shows a logarithmic relationship between the L/h ratio
and ND. By applying linear regression analysis to the data plotted,
a unique relationship can be obtained as follows:

ND ¼ 0:5ðL=hÞ2:4 ð6Þ

The goodness of fit is given by the coefficient of determination
R2 = 0.8. However, for real application, the total number of particles
which are used in the simulation, N, is considered more practical,
thus Eq. (6) can be expressed as follows:
N ¼ NDD ¼ 0:5DðL=hÞ2:4D ð7Þ

Depending on the problem type and the number of particles
used in the simulations, generally a reduction of execution time
varying from one-hundredth to one-tenth ratio can be achieved
by using the proposed technique. Unlike the other techniques pro-
posed in the past, Eq. (7) is very simple and easy to use, and is thus
recommended for practical simulation purposes.
7. Efficiency of the proposed method

The proposed method’s advantage is demonstrated by compar-
ing a system of N particles. For N particles system, the traditional
All-search method requires a complexity of work in the order of
O(N2) [6] to calculate the particle interaction of each particle with
every other particle. The Tree-search method requires less com-
plexity of work i.e. in the order of O(N log N) [6]. The Linked-list
method requires only a complexity of work in the order of O(N)
[6], while on the other hand the proposed method can reduce
the complexity of work in the order of O(0.008N � 0.1N) depending
on the classification of the problem. The coefficient values of
0.008�0.1 are the most reduced execution time ratio obtained
from the results of parametric study using benchmarks in Section
5.

Fig. 19 illustrates the comparison of the required amount of
work for all the aforementioned particle searching methods with
the proposed method. In common to all particle searching meth-
ods, the amount of work are efficient especially for larger number
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of particles used in the simulation. It can be seen that the proposed
outline sub-domain technique shows the highest efficiency degree
as compared to all other particle searching methods. The range of
applicability of the proposed method is shown in the yellow filled
shaded between both curves.
8. Applications

In order to verify the effectiveness of the proposed technique,
1D, 2D and 3D type fluid simulation problems are presented. The
proposed formula in Eq. (7) was used for all the problems below.
8.1. Modified shock tube 1D problem

The original shock tube problem which was used as the bench-
mark problem is modified by dividing the long straight tube filled
with gas into four equal parts along its length. The tube is sepa-
rated by membranes at three locations which divide the tube into
four equal parts. All parts of the tube are initially in an equilibrium
state of assumed constant pressure, density and temperature.
When all the membranes are taken away instantaneously, shock
waves, rarefaction waves and contact discontinuities will be pro-
duced. Fig. 20 shows the scheme of the outlined sub-domain tech-
nique applied to the modified shock tube problem.

Considering that the flow of gas inside the tube is adiabatic in
smooth regions, the functional entropy can be set as a constant,
and thus the relationships between density and pressure follow
the isentropic law. The initial conditions of the simulation are then
given: for x 6 0:15 (q = 1.0; m = 0; e = 2.5; p = 1.0; Dx = 0.0000375);
for 0:15 < x 6 0:30 (q = 0.5; m = 0; e = 1.895; p = 0.379;
Dx = 0.000075); for 0:30 < x 6 0:45 (q = 0.8; m = 0; e = 2.287;
p = 0.732; Dx = 0.000046875) and for x > 0.45 (q = 0.3; m = 0;
e = 1.544; p = 0.185; Dx = 0.000125). Here, q, p, e and m are the
density, pressure, internal energy and initial velocity of the gas,
000x .

Membranes

150x . 300x . 450x . 600x .= = = = =

Fig. 20. Modified 1D shock tube problem.
respectively. Dx is the space between two particles. A constant
time step of 5 � 10�5 s is used for a 1000-step calculation.

In total 10,400 particles were used in the simulation. The radius
of the supporting domain used in the simulation was determined
from two times the smoothing length, d = 0.00025, which is two
times the largest distance between particles in the lowest density
region of Dx = 0.000125, to ensure that all the particles are within
the support domain of the kernel function. From d = 0.00025, the
smoothing length h = 0.000125 can be computed using the multi-
plier factor j = 2. By using Eq. (7), where D = 1 for the 1D type
problem, the division length of L = 0.0075 can be calculated, which
gives the rounded number of 80 equal divisions along the tube
length.

The CPU time required for conducting the 1000-step simulation
was about 86.2 s, which is only 7.1% of the time required when the
proposed technique was not used, namely 1210.8 s. From the com-
parison of both execution CPU times, the proposed technique
shows its effectiveness in reducing the time required for conduct-
ing the modified 1D Shock Tube simulation.

Fig. 21 shows the density distribution along the x-axis at a
2400-step calculation after all the membranes that separated den-
sity varied regions were removed instantaneously at the same
time.

8.2. Modified shear driven cavity 2D problem

The shear driven cavity 2D problem previously used as the
benchmark problem is modified by cutting off the four corners of
the rectangle domain and by removing the center area. The fluid
flow within a closed area is generated by moving the inner top
and bottom sides inside the center area at a constant velocity in
reverse horizontal directions. In the simulation, the kinetic viscos-
ity and density are m = 10�6 m2/s and q = 103 kg/m3, respectively.
The inner top and bottom sides of the center area move at a con-
stant velocity of V = 10�3 m/s. A constant time step of 5 � 10�5 s
is used. A constant smoothing length of 2.5 � 10�5 m is used.
Fig. 22 shows the holed corner-cut shear driven cavity problem.

In total 6000 particles were used in the simulation. From the
defined smoothing length h = 2.5 � 10�5 m, the division length
L = 0.0002 m can be obtained from Eq. (7), where D = 2 for the 2D
type problem. The largest dimension of the simulation domain is
then divided by L and gives the rounded number of 12 equal divi-
sions in the horizontal and vertical directions.
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Fig. 21. Density distributions along the tube from the modified 1D shock tube
simulation results at 0.03; 0.06; 0.09 and 0.12 s, respectively.

Fig. 22. Holed corner-cut 2D shear driven cavity problem.

Fig. 23. Holed corner-cut 2D shear driven cavity velocity distribution result.
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The CPU time required for conducting the 6000-step simulation
was about 932 s, which is about 17% of the time required when the
proposed technique was not used, namely 5492 s. From the com-
parison of both execution CPU times, the proposed technique
shows its effectiveness in reducing the time required for conduct-
ing the modified 2D Shear Driven Cavity simulation.
Fig. 23 shows the velocity distribution using constant-length
vectors of the results at time 0.3 s after 6000 steps of simulation.
8.3. Example of shear driven cavity 3D problem

The shear driven cavity 3D problem previously used as the
benchmark problem is modified by making middle square holes
in three directions along the centerline axes of the cube. The fluid
flow within the modified volume of the cube is generated by mov-
ing the top side of the cube at a constant diagonal 45 degree veloc-
ity generated while the other sides remain fixed. In the simulation,
the kinetic viscosity and density are m = 10�6 m2/s and q = 103 kg/
m3, respectively. At the top side of the cube, particles are moved
at a constant velocity of V = 10�3 m/s in the x and z directions. A
constant time step of 5 � 10�5 s is used. A constant smoothing



Fig. 24. Center hollowed cube 3D shear driven cavity problem.

Fig. 25. Center hollowed cube 3D shear driven cavity velocity distribution result.
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length of 2.5 � 10�5 m is used. Fig. 24 shows the center hollowed
cube 3D shear driven cavity problem.

In total 160,000 particles were used in this simulation. By using
Eq. (7), the division length of L = 0.00015 m was determined, and
thus the number of horizontal and vertical equal divisions of the
problem calculated is 10 in the x, y, and z directions.

From the defined smoothing length h = 2.5 � 10�5 m, the divi-
sion length L = 0.00018 m can be obtained from Eq. (7), where
D = 3 for the 3D type problem. The largest dimension of the simu-
lation domain is then divided by L, giving the rounded number of
nearly 10 divisions in the x, y, and z directions.

The CPU time required for conducting the 100 steps simulation
was about 91.5 min which is about 2.5% of the time required when
the proposed technique was not used, namely 3662.4 min. From
the comparison of both execution CPU times, the proposed tech-
nique shows its effectiveness in reducing the time required for
conducting the modified 3D example of shear driven cavity
simulation.
Fig. 25 shows the velocity distribution using constant-length
vectors of the results at time 0.3 s after 6000 steps of simulation.
9. Conclusion

From parametric studies, it can be concluded that the proposed
technique is effective in a range of applications if certain numbers
of divisions are used, especially when large numbers of particles
are used in the SPH simulation. This tendency is shown by the con-
cave lowest curve in the figures as the results of parametric stud-
ies. Further increase in the number of particles used in the
simulation will help the proposed technique to achieve a signifi-
cant level of improvement in terms of saving execution time. The
most significant contribution of this paper in conducting fluid sim-
ulation by using the SPH method is that the proposed technique
will reduce the execution time considerably using the handy for-
mulation established. Therefore, the proposed technique is recom-
mended for practice.

There are subjects for further work: to apply a similar algorithm
to the other particle methods; to combine the technique with par-
allel computing technologies for the particle bookkeeping process.
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