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DYNAMICS OF RIGID PAVEMENTS 

S.W. Alisjahbana1, W. Wangsadinata2 

ABSTRACT : In this paper the dynamic response of rigid pavements to dynamic moving loads are investigated. 
To solve this complicated problem, the rigid pavement is modelled as an orthotropic rectangular plate supported 
by an elastic foundation. The natural frequencies are presented in a form fully analogous to that of a simply 
supported plate. For a simply supported plate, the wave numbers are equal to nm/a and mu/b, where 4a' and 'b' 
denote the length of the plate in the x and y direction respectively and m and n are positive integers, which 
determine the number of the mode. The mode shape is presented as a product of eigenfunctions and is further 
used in the dynamic response analysis. The dynamic loading function is described as a concentrated moving 
transverse load of harmonically varying amplitude, which travels with a constant speed. Such a loading may be 
considered to represent an aircraft wheel loading on a runway pavement upon landing of the aircraft. The general 
solution for this loading function is derived in integral form. This integral is then solved to determine the forced 
responses of the plate. It is the purpose of this paper to illustrate and demonstrate the applicability of this theory 
in practice by presenting numerical results of the analysis of the natural frequencies, dynamic response 
deflections, bending moments and shear forces of an example rigid runway pavement. 

KEYWORDS : Dynamics, rigid pavement, runway. 

1. INTRODUCTION 

Several plate elements used in civil engineering, aerospace and marine structures are supported by elastic or 
viscoelastic media and subjected to transverse dynamic loads. The usual approach in formulating these problems 
is based on the inclusion of the foundation reaction into the corresponding differential equation of the plate. The 
foundation is very often a complex medium, but since of interest here is the response of the plate, the problem 
reduces to finding a relatively simple mathematical expression, which could describe the response of the 
foundation at the contact area. 

The simplest representation of a continuous elastic foundation has been provided by Winkler (Kerr 1964), who 
assumed the base consisting of closely spaced independent linear springs. It presumes a linear force-deflection 
relationship, so that i f a deflection w is imposed on the foundation, it resists with a pressure kjw, where is the 
foundation modulus. Some of the more recent studies dealing with the stability and the dynamic response of an 
orthotropic plate include work by Paliwal & Gohsh (Paliwal, Gohsh 2000), who determined the stability of 
orthotropic plates on a Kerr foundation, m 2001 Alisjahbana (Alisjahbana 2001) presented the analysis of a 
rectangular orthotropic plate responding to dynamic human loads. Later, Alisjahbana (Alisjahbana 2001) 
presented the analysis of the orthotropic plate on a Winkler foundation, which included the effect of in-plane 
critical loads. 

The purpose of the analysis given in this paper is to present a general solution based on Fourier techniques for 
the free and forced responses of elasticaliy supported rectangular orthotropic plates 

subjected to a moving transverse dynamic load. 

2. GENERAL ANALYSIS 
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The sides of the rectangular damped orthotropic plate, a and b, are parallel to the x and y axes respectively as 
shown in Figure 1. The plate is subjected to a general moving transverse dynamic load p(x,y,t) and rests on a 
Winkler foundation with a foundation modulus kj. Expressing the plate deflection as w, the general differential 
equation of the deflected surface is as follows: 

D a V ( x , y , t ) + 2 B a V ( x , y , t ) + p a V ( x , y , t ) + Y j w ^ + p a V ( x , y , t ) + k w = p ( x ^ t ) ( l ) 

ax 4 dx'dy' ay 4 di 

where D x , D y are flexural rigidities in x and y directions respectively and B is the effective torsional rigidity; y is 
the damping ratio and p is the mass density. 

The solution of the homogeneous orthotropic plate equation can be determined by the method of separation of 
variables. By substituting separation variables that satisfy the boundary conditions according to: 

(2) 
(mtoC sin 
1 a , I I b J 

into the homogeneous equation of motion according to Eqn. (1), one obtains: 

W m n ( x , y ) T ( t ) 
4 4 ? 2 4 4 4 

2u2 a"b 
y b 4 - 1 

^ W J ^ y ) - y h % ™ W J x , y ) . p I 
dt at 

(3) 

Since W m n (x,y) depends only on the spatial variables and T ^ f ) depends on the temporal variables, each side of 
Equation (3) must be equal to a constant. These separation constant values, or eigenvalues, will be denoted as 
p 4 m n that can be expressed as follows: 

(4) 

Furthermore, the natural frequencies of the plate, which are related to the separation constants (34 m n are given by: 

(5) 
ph 

Thus, the solution of the homogeneous equation can be expressed as 

wmn(x,y,t) = X I Wm n(x,y)Tm n(t) = £ 1 sin rr)7tx sin 
nny 

(6) 

FORCED RESPONSE 

Since a fundamental set of solutions of the homogeneous partial differential equation is known and given by the 
eigenfunctions, it is appropriate to use the method of variation of parameters as a general method of determining 
a particular solution of the corresponding non-homogeneous partial differential equation of motion. 

Using the characteristic function from Eqn.(2), an appropriate solution for the forced response may be written in 
the form: 

w m n ( x ,y , t ) = £ £ A m n sin rrmx" sin nrcy sin nrcy 
a . b _ 

Tmn(t) (7) 

where T ^ (t) is a function of time and must be determined through further analysis. 
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After substituting Equation.(7) into the governing non-homogeneous partial differential equation of motion, 
Equation (1) can be put in the following form : 

4 4 2 2 4 4 4 

D x ^ 4 - + 2 B - ^ r - + D y - ^ 4 - + k i 
a 

+ ph 
^ 2 T m n (t) 

at2 

Wm n(x,y) + y h 5Tmn(t) 
cK 

Wm n(x,y)Tm n(t) 

Wm n(x,y) = p(x ly lt) 

(8) 

The differential equation for the coefficient functions (t) may be obtained by multiplying both sides of 

Equation (8) in turn by either sin rriTix 
a 

or Sin - — I and integrating over the plate region 0<x<a;0<y<b. Thus 
b 

an ordinary differential equation forTmn(t) is obtained in the following form: 

%m ( t ) + 2 y c o m n (t)+0)L T r a n ( t ) = 
a f . mux , J . nTty , 

J sin d x j sin dy 

a „ b 

p ( x , y , t ) 

[ p h Q m n ] 
(9) 

where y 
2po)r 

is a damping factor ratio and Q m n is a normalization factor. 

Note that the homogeneous solution of Equation (9) is identical with the one previously obtained using the 
separation of variables solution method. The total solution of Equation (9) for T m n ( t ) is 

T m n (t)=T m n (t ) + r m n (t) 
(10) 

where Tm n(t) is the homogeneous solution and T*m n(t) is the particular solution that can be represented in the 
form of a Duhamel convolution integral as follows 

0 P h Q m n 0 

{X m (x)dxJY n (y)dy[G(t-x)] 

-J P(x,y,x) 

phQ m n 

JX m (x)dxjY n (y)dy 
•m«n(t-x) 

s i n V l - y 2 o ) m n ( t - T ) 

(11) 

The homogeneous solution of the function T m n ( t ) contains the constants that must be determined from the 
initial conditions, which represents a transient state of vibration motion resulting from the initial conditions. The 
nature of the steady state forced responses of the plate is contained entirely in the functions T*m n(t) defined by 
Equation (11). 

Substituting the expressions for the coefficient functions in Equaton (11), the general deflection solution for the 
forced response of an orthotropic rectangular plate to an arbitrary transverse dynamic load p(x,y,t) is given in 
integral form by 

w(x,y,t) = £ £ 
m=1 n= 

oo oo 

+ 1 1 

Xm(x)Y„(y)e •Y<»mnt 
, l +b m n e- i - r » m n t 

P(x,y,x) 
phQ r 

|X m (x )dxjY n (y )dy - s i n J l - y 2 a > m n ( t - T ) 

(12) 
d i 

The general solution presented above may be integrated to determine the response of the plate for an arbitrary 
applied transverse dynamic load p(x,y,t). 

A concentrated transverse load of harmonically varying amplitude moving in y direction of a plate in a straight 
line path at a constant x position with a constant speed v, which may be considered to represent an aircraft wheel 
loading upon landing of the aircraft, can be expressed as follows: 

I 
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P(x,y,t) = P 0 coscot 8[x - x 0 ] 5[y - vt] 

Substituting the load function given in Eqn.(13) into the general deflection solution, Eqn.(12) becomes 

(13) 

w(x,y,t) = X I 

CO CO 

X»(x>Y„(y)e 

I PQCOSCDT W • mTrx . nrcy 
-2 sin s i n — -

J P h Q r J J » h 

a m n e + D m n e 

6[x-x 0]5[y-vx]jdxdy sinVl-y 2o)m n(t-x) d i 

(14) 

The spatial integrals in Eqn.(14) may be readily evaluated as 

a b 

JJ COSCOT 
0 0 

. mux . njty r i^r i 
sin sm o|x - x0Jo[y - vx] 

a b 

, , . mrcx0 . 
dxdy = P0 cosco x sin sm 

a 
vx (15) 

4. DYNAMIC RESPONSE OF THE PLATE 

Consider the case of the moving wheel load of an aircraft during landing with constant approaching speed v 
along the y direction. The load may be expressed as P0coscot. At t - to, in which to — b/v, the load leaves the 
plate. Thus, this problem may be treated in two parts. The first part involves a harmonically oscillating 
concentrated transverse load moving in y direction at a constant XQ position. The second part, in which the load is 
no longer on the plate, involves a free vibration response of the system. The two parts of the problem are related 
through the boundary conditions. The motion of the plate at t = to due to the load at x = XQ becomes the initial 
condition of the plate at the subsequent instantaneous loading change at t = to-

Using the above principles, the motion during an interval of time in which the load is no longer on the plate can 
be computed. Assuming the motion has achieved steady state prior to the load leaving the plate, the motion at t = 
to may be easily computed. This motion at t = to determines the initial condition for the second part of the 
problem. The response of the system can be easily computed by the following equation: 

w m „(x .y . t )=EX e ~ w '" to; w 0 m n cosft(t - to)] + V ° m n ; + Y ( Q , m n W ° m n sintVl^y2"(0mn(t - to)] 
Y 2 < ° m n 

(16) 

in which w o m n and v o n m in Eqn.(16) are the initial deflection and velocity at t = to-
Bending moments and the vertical shear forces in the plate can be computed in terms of the deflections obtained 
from Eqn.(16) from the following expressions: 

n ^ + B a 2 w x « 2 
dx dy' 

M , 

d_ 
x ax 2 dy2 

a 2 w 

dy2 

a 2 w 

ax 2 

+ H 
a 2 w 
ax-

(17) 

where H=B+2G and G is the elastic shear modulus of the plate. In terms of elasticity moduli and Poison's ratios, 
the flexural rigidities and the effective torsional rigidity can be expressed as follows : 

D Ex h : D y = 
E y rr 

X 1 2 ( l - v x v y ) Y 1 2 ( l - v x v y ) 
(18) 

where E x and Ey are the elasticity moduli in the x and y direction respectively, v x and v y are the Poison's ratios in 
the x and y direction respectively and h the thickness of the plate. 

Vibration, Impact and Structural Dynamics I VlD-11 
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5. NUMERICAL EXAMPLE 

Using the procedure described above, a runway pavement subjected to the moving dynamic wheel load of an 
aircraft during landing will be analysed. The effect of changing the load's frequency co and the damping ratio y 
will be considered. The transverse dynamic load is P0 = 2 x 105 N , travelling with a constant approaching speed v 
= 260 km/hr. along the y direction representing the wheel loading of a DC 10 aircraft 30/40 series during 
landing. The following numerical results have been calculated for the following case: a = 7.5m, b = 15m, p = 
2.4xl0 3 kg/m3, h = 0.5m, E* = SOxlO^N/m2, Ey = 20xl0 9N/m 2, v x = 0.2, v y = 0.1, G = 101 0N/m2, k, = 7.5xl0 7 

N/m 2/m, x 0 = 3.75 m. 

Tabel 1. Natural Frequencies of the Runway Plate for the First 5 Modes (M = 1,2,...,5 and N = 1,2,...,5) 

n m=l 
& > m n 

(rad/sec) 

n m=2 
comn (rad/sec) 

n m=3 
© m n (rad/sec) 

n m=4 
mmn (rad/sec) 

n m=5 

(rad/sec) 
1 385.073 I 523.812 1 900.064 1 1497.95 I 2293.31 
2 617.42 2 720.647 2 1036.88 2 1592.77 2 2363.98 
3 877.165 3 963.112 3 1231.57 3 1739.35 3 2477.29 
4 1145.82 4 1224.39 4 1461.2 4 1925.91 4 2676.72 
5 1418.34 5 1494.66 5 1711.75 5 2142.03 5 2809.33 

Table 1 shows the natural frequencies of the system for the first 5 modes (m = 1,2,...,5 and n = 1,2,...,5). It can 
be seen from the table that the natural frequency increases as the mode number increases. 

Figure 2 shows the dynamic response spectra as a function of the load's frequency and damping ratio. It can be 
seen that the dynamic deflection will be maximum when the load's frequency approaches the value of the first 
natural frequency of the runway plate. 

Figure 3 shows the various responses of the runway plate to the moving transverse wheel loading of the aircraft. 
By comparing the case at near resonance condition and that away from resonance condition, one can recognize 
the significance of avoiding the resonance condition, since at resonance the various responses are apparently 
relatively very high. 

Finally, 
load. 

Figure 4 gives an overview of the dynamic deflection shapes due to the transverse moving dynamic 

h 

• 0% • 5% • 10% 

S 

s a ooiM 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
ki elastic support 200 300 400 

Load's frequency (rad/sec) 

Figure 1. A Rectangular Orthotropic Plate Resting on a Figure 2. Maximum Dynamic Deflection Response 
Winkler Foundation Subjected to a General Moving Spectra as a Function of the Load's Frequency 
Transverse Dynamic Load a n < j Damping Ratio 
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6. CONCLUSIONS 

In conclusion the following can be stated : 

t) The theory of the orthotropic rectangular plate supported by an elastic foundation subjected to a moving 
transverse dynamic load based on Fourier techniques, can reasonably be applied for the analysis of rigid 
pavements, such as runway pavements, subjected to aircraft wheel loading during landing of the aircraft. 

2) This dynamic response analysis gives a better understanding of plate behaviour under the effect of the 
moving transverse dynamic loads, so that it becomes an additional design tool beside the conventional static 
design approach. 

3) This dynamic response design approach would give more freedom in the selection of pavement and 
foundation material properties, since it is the combined material effect, rather than the individual ones, that 
determines the overall performance of a rigid pavement that is shown from the result of the dynamic 
response analysis. 

4) For certain aircraft loadings, impact characteristics upon landing and approaching speeds, it is possible to 
construct response spectra design charts, which is the subject of further study of the authors. 
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to t»l iyr. Ml (a) 

Y = 5 % 
co = 380 rad/sec 

t o t a l ijn. dei l (a) 

0.0004 Y = 5% 
co = 500 rad/sec 

Total dynamic deflection time history at mid span. 

Y = 5% 
co = 380 rad/sec 

Total dynamic deflection time history at mid-span. 

Y = 5 % 
co = 500 rad/sec 

M x time history at midspan. 

y = 5% 
co ™ 380 rad/sec 

M x distribution along the x axis at t=0.1sec. 

Y = 5% 
co = 380 rad/sec 

*<*0 

M y distribution along the x axis at t=0.1sec. 

Y = 5% 
co = 380 rad/sec 

- 5 0 0 0 

1 0 0 0 0 

M x time history at midspan. 

Y = 5% 
co = 500 rad/sec 

M x distribution along the x axis at t=0.1sec. 

Y = 5 % 
co = 500 rad/sec 

Shear force distribution along the x axis at t=0.1sec. 

My distribution along the x axis at t=0.1sec. 

Y = 5% 
500 rad/sec 

Shear force distribution along the x axis at t=0.1sec. 

Figure 3. Various Dynamic Responses of the Plate at Near Resonance Condition (Left) and Away From Resonance 
Condition (Right) 
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Figure 4. Total Dynamic Deflection Shapes for 0< T < T 0 ( r « % , ©=500 Rad/Sec.) 
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