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DYNAMICS OF RIGID PAVEMENTS
S.W. Alisjahbana', W. Wangsadinata®

ABSTRACT : In this paper the dynamic response of rigid pavements to dynamic moving loads are investigated.
To solve this coraplicated problem, the rigid pavement is modelled as an orthotropic rectangular plate supported
by an elastic foundation, The natural frequencies are presented in a form fully analogous to that of a simply
supported plate. For a simply supported-plate, the wave numbers are equal to mm/a and nr/b, where ‘a’ and ‘b’
denote the length of the plate in the x and y direction respectively and m and n are positive integers, which
‘determine the number of the mode. The mode shape is presented as a product of cigenfunctions and is further
used in the dynamic response analysis. The dynamic loading function is described as a concentrated moving
transverse load of hammonically varying amplitade, which travels with a constant speed. Such a loading may be
considered to represent an aircraft wheel loading on a runway pavement upon landing of the aircraft. The general
schution for this loading function is derived in integral form. This integral is then solved o determine the forced
responses of the plate. It is the purpose of this paper to illustrate and demonstrate the applicability of this theory
in practice by presenting numerical results of the analysis of the natural frequencies, dynamic response
deflections, bending moments and shear forces of an example rigid runway pavement.

KEYWORDS : Dynamics, rigid pavement, runway.

1. INFRODUCTFION

Several plate elements used in civil engineering, aerospace and marine structures are supported by elastic or
viscoelastic. media and subjected to transverse. dynamic loads. The.usual approach in formulating these problems
is based on the inclusion of the foundation reaction into the corresponding differential equation of the plate. The
foundation is very eften a complex medium, but since of interest here is the response of the plate, the problem
reduces to finding a relatively simiple mathematical expression, which could describe the response of the
foundation at the contact area.

The simplest representation of a continuous elastic foundation has been provided by Winkler (Kerr 1964), who
assumed the base consisting of closely spaced independent lnear springs. It presumes a linear force-deflection
relationship, so that if a deflection w is imposed on the foundation, it resists with a pressure k;w, where k, is the
foundation modulus. Some of the more recent studies dealing with the stability and the dynamic response of an
orthotropic plate include work by Paliwal & Gohsh (Paliwal, Gohsh 2000), who determined the stability of
orthotropic plates on a Kerr foundation. In 2001 Alisjahbana (Alisjahbana 2001) presented the anatysis of a
rectangular orthotropic plate responding to dynamic human loads. Later, Alisjahbana (Alisjahbana 2001)
presented the analysis of the orthotropic plate on @ Winkler foundation, which included the effect of in-plane
critical loads.

The purpose of the analysis given in this paper is to present a general solution based on Fourier techniques for
the free and forced responses of elastically supported rectangular orthotropic plates

subjected to a moving transverse dynamic load.

2. GENERAL ANALYSIS
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The sides of the rectangular damped orthotropic plate, a and b, are parallel to the x and y axes respectively as
shown in Figure 1. The plate is subjected to a general moving transverse dynamic load p(x,y,t) and rests on a
Winkler foundation with a foundation modulus k,. Expressing the plate deflection as w, the general differential
equation of the deflected surface is as follows:

4 4 4 z
oWyt e dWy,t)  py 0wy, GW(y,0 | WYY
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ox ox"0y” ay ot at*
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where D,, D, are flexural rigidities in x and y directions respectively and B is the effective torsional rigidity; ¥ is
the damping ratio and p is the mass density.

The solution of the homogeneous orthotropic plate equation can be determined by the method of separation of
variables. By substituting separation variables that satisfy the boundary conditions according to:

Wan9 = 33 W 6T (0 =55 Asin] ™2 Jin( )7, 1 ®

m=1n=1 m=1n=1
into the homogeneous equation of motion according to Egn. (1), one obtains:

m*r* m2n’1* n*n*
1:Dx . +2B e -l-Dy x +k (W (6 Y) T (B)

3
0T, (t)

ar_. (1)
= _phTWmn(&y) _YhTWmn(x!y) b B:m

Since Wa(x,y) depends only on the spatial variables and Ty,(t) depends on the temporal variables, each side of
Equation (3) must be equal to a constant. These separation constant values, or eigenvalues, will be denoted as
Bdm that ¢can be expressed as follows:

4 2.2 4
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Furthermore, the natural frequencies of the plate, which are related to the separation constants B*.m are given by:

4
2 ﬂmn
= ——_— S
mmn ph ( )

Thus, the solution of the homogeneous equation can be expressed as

w,_ {(xy.1)= ii W (6 y)T, (1) = 22 [sin[m—:i]sin[%y-ﬂe-%m‘ [aomnei -7 Ot +bumne-iﬁ%t]
=1 =t m=1n=
(6)
3. FORCED RESPONSE
Since 2 fundamental set of solutions of the homogeneous partial differential equation is known and given by the
eigenfunctions, it is appropriate to use the method of variation of parameters as a general method of determiining

a particular solution of the corresponding non-homogeneous partial differential equation of metion.

Using the characteristic function from Eqn.(2), an appropriate solution for the forced response may be written in
the form:

W (%Y, 1) = iiAm sin[m]sin[m}mn(t) )]

m=1 n=1 a b

where T, (t) is a function of time and must be determined through further analysis.
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After substituting Equation.(7) into the governing non-homogeneous partial differential equation of motion,
Equation (1) can be put in the following form :

m*n? m*nn? nr?
[Dx - +2B i +Dy o +k, (WL (T (D
®
T (t &t (t
+ph Ty (.y)+yh—%wmn(x,y>=p(x.y.t)

The differential equation for the coefficient functions T, () may be obtained by multiplying both sides of

’ . .| mMAx n
Equation (8) in turn by either S|n|: : } or SII’I|: gy} and integrating over the plate region 0<x<a;0<y<b. Thus

an ordinary differential equation for Tp,(t} is obtained in the following form:

m , ° . nmy ]p(x,y,t)
dx [sin dy ()
s [0hQpn |

T () 270n T (1) + 02 T (¢ ):Fsinm

where ¥ = T lisa damping factor ratio and Qp, is a normalization factor.
2pW,

Note that the homogeneous solution of Eqnation (9) is identical with the one previously obtained using the
separation of variables solution method. The total solution of Equation (9) for Tp(t) is

T (=T () +Tan(t) (10)

where 'i'mn(t) is the homogeneous solution and T*,(t) is the particular solution that can be represented in the
form of a Duhantel convolution integral asfollows

p(x.y. 1)
T'mn(t) = J{thT [Xn(2) dij (y) dy [G(t- 'r)]]dt

mn

Forna (t—1)
I[p(ﬁg,t) J'X,Ax) dx j'Y (y) dy}[eﬁasm f1 ‘-T-Z_fﬂmn (t=1) |dr

The homogeneous solution of the function 'fmn (t) contains the constants that must be determined from the

initial conditions, which represents a transient state of vibration motion resulting from the initial conditions. The
nature of the steady state forced responses of the plate is contained entirely in the functions T*q,(t) defined by
Equation (11).

(1)

Substituting the expressions for the coefficient functions in Equaton (11), the general deflection solution for the
forced response of an orthetropic rectangular plate to an arbitrary transverse dynamic load p(x,y.t) is given in
integral form by

wi{X,V, t) ii[ X)Y (y)e""’"'"‘ [amnei TPt +bmne-i 1-y2m,,,,,tﬂ

oo = s a2
+Zﬂ2{ OI[";X Loty [xa deY (v)dy}[%_—ym—sinw—?zmm(t—-r)ﬂm

m=1

The general solution presented above may be integrated to determine the response of the plate for an arbitrary
applied transverse dynamic load p{x,y,t).

A concentrated transverse load of harmonically varying amplitude meving in y direction of a plate in a straight

line path at a constant x position with a constant speed v, which may be considered to represent an aircraft wheel
loading upon landing of the aircraft, can be expressed as follows:

vihration, lmpact and Structural Dynamics VID-10
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p(x,y,t) = P, cos ot 8[x — X, | 5[y — vi] (13)

Substituting the load function given in Eqn.(13) into the general deflection solution, Eqn.(12) becomes

wxy.t) = i i [Xm (X)Y, (y)e ™" [amne‘ﬁ‘“mn‘ +b g Tt H

m=1n=1

2 | e —Ftin {t-1)
+ZZ[ J{P: EZS:T Ojoj{sin m:x sin%s[x -%,]8[y - VT]]dXdyﬂ{__\/e::%m_mn sinyi—Tom,. (1— T)} "

(14)

The spatial integrals in Eqn.(14) may be readily evatuated as

ab

J'J'Pocosm[sin Ll singblﬁ[x -x,]8ly - vr]}dxdy =P,cose T5sin 0% sm{}:}—n V’C} (15)
a a

00

4. DYNAMIC RESPONSE .OF THE PLATE

Consider the case of the moving wheel load of an aircraft during landing with constant approaching speed v
along ‘the y direction. The load may be expressed as Pyeosot. Af t="t,, in which ty= b/v, the load leaves the
plate. Thus, this problem may be treated in two parts. The first part involves a harmonically oscillating
comcentrated transverse load moving in y direction at a constant x, position. The second part, tn which the load is
no longer on the plate, involves a free vibration response of the system. The two parts of the problem are related
through the boundary conditions. The metion of the plate at t = t; due to the load at X = x, becomes the inttial
condition of the plate at the subsequent. instantancous loading change at t = 1.

Using the above principles, the motion during an interval of time in which the load is no longer on the plate can
be computed. Assuming.the motion has achieved steady state prior to the load leaving the plate, the molion att =
t, may be casily computed. This motion at t = t determines the initial condition for the second part of the
problem. The response of the system can be easily computed by the following equation:

LI Vomn ¥ T@mnWoma o =
USCSTHEDIIL *’{wm cos{f1(t—ta)1+°—\/—1_*_—z—°—smw1—vzmm(t-ton} (16)
m=1n=1

—Y @mq

in which Woms 20d Ven in Eqn.(16) are the initial deflection and velocity at t = t;.
Bending moments and the vertical shear forces in the plate can be computed in terms of the deflections obtained
_from Eqn.(16) from the following.expressions:

2 2 2 2
M =-|p 2V, pT¥ M, =- Dy‘—a—‘;’+Ba—¥
ox* oy oy ox

an

2 2 2 2
Qx :——a_ Dxa“Z_‘FHQzN_ 5 Qy :_i Dxavj-‘_Hi‘_Z-
ax ox dy oy oy ox

where H=B+2G and G is the clastic shear modulus of the plate. In terms of elasticity moduli and Poison’s ratios,
the flexural rigidities and the effective torsional rigidity can be expressed as follows :

— E h3 . - Eyh3 a — f
Dx_12(1fvxvy) ’ Dy—lz(l—vxvy) Sl %

where Ey and E, are the elasticity moduli in the x and y direction respectively, v, and v are the Poison’s ratios in
the x and y direction respectively and h the thickness of the plate.

Vibration, impact and Structural Dynarnics viD-11
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5. NUMERICAL EXAMPLE

Using the procedure described above, a runway pavement subjected to the moving dynamic wheel load of an
aircraft during landing will be analysed. The effect of changing the load’s frequency @ and the damping ratio ¥
will be considered. The transverse dynamic load isP, =2 x 10° N, travelling with a constant approaching speed v
= 260 km/hr. along the y direction representing the whee! loading of a DC 10 aircraft 30/40 series during
landing. The following numerical results have been calculated for the following case: a = 7.5m, b= 15m, p =
2.4x10° kg/m’, b = 0.5m, E, = 30x10°N/m’, By = 20x10°N/m’, v = 0.2, v, = 0.1, G = 10'°N/m?, k, = 7.5x107
N/m*/m, x,=3.75 m.

Tabel 1. Natural Frequencies of the Runway Plate for the First 5 Modes (M = 1,2,...,5 and N=1.2,...,5)

n m=1 n m=2 n m=3 n m=4 n m=3
B Bmp (rad/sec) O, (rad/sec) W (rad/sec) O
(rad/sec} (rad/sec)
{ 385.073 1 523.812 i 900.064 1 1497.95 i 2293.31
2 617.42 2 720.647 2 1036.88 2 1592.77 2 2363.98
3 877.165 3 963.112 3 1231.57 3 1739.35 3 2477.29
4 1145.82 4 1224.39 4 1461.2 4 1925.91 4 2676.72
5 1418.34 5 1494.66 5 171175 § 2142.03 5 2809.33

Table 1 shows the natural frequencies of the system for the first 5 modes (m = 1,2,...,5 and n = 1,2,...,5). It can
be seen from the table that the natural frequency increases as the mede number increases.

Figure 2 shows the dynamic response spectra as a function of the load’s frequency and damping ratio. It can be
seen that the dynamic deflection will be maximum when the load’s frequency approaches the value of the first
natural frequency of the ranway plate.

Figure 3 shows the various responses of the runway plate to the moving transverse wheel loading of the aircraft.
By comparing the case at near resonance condition and that away from resonance condition, one can recognize
the significance of avoiding the resonance condition, since at resonance the various responses are apparently
relatively very high.

Finally, Figure 4 gives an overview of the dynamic deflection shapes due to the transverse moving dynamic
{oad.
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Figure 1. A Rectangular Orthotropic Plate Resting on a  Figure 2. Maximum Dynamic Deflection Response
Winkler Foundation Subjected to a General Moving Spectra as 2 Function of the Load’s Frequency
Transverse Dynamic Load and Damping Ratie
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6. CONCLUSIONS

In-conclusion the following can be stated :

b

2)

3)

4)

The theory of the orthotropic rectangular plate supported by an elastic foundation subjected to a moving
transverse dynamic load based on Fourier techniques,-can reasonably be applied for the analysis of rigid
pavements, such as runway pavements, subjected to aircrafi wheel loading during landing of the aircraft.

This dynamic response analysis gives a better understanding of plate behaviour under the effect of the
moving transverse dynamic loads, so that it becomes an additional design tool beside the conventional static

design approach.

This dynamic response design approach would give more frecdom in the selection of pavement and
foundation material properties, since it is the combined material effect, rather than the individual ones, that
determines the overall performance of a rigid pavement that is shown from the result of the dynamic

‘response analysis.

For certain aircraft loadings, impact characteristics upon landing and approaching speeds, it is possible to
construct response spectra design charts, which is the subject of further study of the authors.
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Figure 3. Various Dynamic Responses of the Plate at Near Resonance Condition (Left) and Away From Resonance
Condition (Right)
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