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DYNAMIC BEHAVIOUR of RIGID CONCRETE PAVEMENTS
UNDER DYNAMIC TRAFFIC LOADS
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I Professor Emeritus Tarumanagara (lniversiQ; President Direclor Wiratman & Associales

2 Professor Tarumanagara [Jniversily; Head of the Graduate Program
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Senior Engineer Wiratman & Associates

ABSTRACT : This paper examines the dynamic behaviour of rigid concrete pavements under
dynamic traffic loads, which includes the det€rmination of the forces in the concrete plate and in
the steel connecting devices at the joints, consisting of dowels and tie bars. For this purpose the

rectangular plate is modelled as an elastic homogeneous orthotropic plate supported by a

continuous Pastemak foundation, with boundary supports provided by the steel dowels and tie
bars, providing elastic vertical support and rotational restraint. The free vibration problem is

solved using two transcedental equations, obtained ftom the solution of two auxiliary Levy's type
problems, known as the Modified Bolotin Method. The tlanscedental equations have infinite
number of roots, ofwhich the real roots are the wave numbers, while the integer part ofthe wave
numbers represents the mode numbers. The mode shape is represented as a product of
eigenfunctions, which are further used in the dynamic response analysis. The dynamic moving
haffic load is expressed as a concentraled load ofharmonically varying magnitude, moving on the
plate in an arbitrary direction with a constant velocity. The homogeneous solution of the problem
is obtained by a method of seperation of variables, in such a way that superposition yields a

solution satisrying the boundary conditions. The general solution ofthe response ofthe plate to the

dynamic moving load in integral form is obtained from the specific properties ofthe Dirac-delta
function, so that it can be further integated to obtain the various plate response equations during
the time interval the load is moving within the plate boundaries, as well as after the load has left
the p1ate. All ofthe equations are then used to analyse deflections and forces in the concrete plate,

including forces in the load transferring steel devices at the joints between consecutive plates. A
numerical example is given illushating the dynamic behaviour of a rigid concrete pavement under
a dynamic traffic load.

KEYWORDS: Rigid pavement, dynamic traffic load, dynamic response.

1, INTRODUCTION

The dynamic response of rigid concrete pavements to dynamic moving traffic loads has been studied
quite extensively by Alisjahbana, Wangsadinata and Baadilla in recent years tll t2l t3l t4l t5l t6l t7l
t8l.

The rigid concret€ pavement has been modelled as a rectangular damped orthotropic plate resting on a

continuous elastic foundation with side supports providing cerlain restraint conditions. The dynamic
traffic load has been modelled as an equivalent concentrated load of harmonically varying magnitude,
moving on the plate with a constant velocity.

For the continuous elastic foundation, several types have been considered, such as proposed by
Winkler, Pastemak and Kerr. For the side support restraint conditions, beside vertical support, also

rotational restraint conditions have been considered, from simple support, partially fixed to fully fixed
(clamped) conditions. In a recent study, Baadilla has formul4ted the side support restraints, provided at

the joints by the steel connecting devices, as actually applied in real concrete pavement construction.
These devices consist of steel dowels and steel tie bars, providing elastic vertical support and elastic
rotational restraint, depending on the applied number and size ofthe dowels and tie bars.

In the application of the theory of dynamic response of the orthotropic plate, the continuous elastic

foundation modelled as a Pastemak foundation is representing closely the actual subsoil condition, but
requiring advanced analytical treatment in solving the dynamic response problem. A Pasternak

foundation model incorporates shear interaction between spring elements, mobilized through a plate
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placedontopofthesprings,whichdeformsonlybytransverseshear'Thus'inthismodelcompressive
l"J ,r,*. deformation of the soil are duly simulated. Using this Pastemak foundation model, for the

;;il n"" uilruting simply supported rectangular plate, the number of waves is represented by

;;;;;",b, where'i una't' 
".. 

itt" length of ihe plate in the two perpendicular directions and'm'

".i:j'.i"p".r,rrr" 
in,"g".., defining the mode- number. For the case of the rectangular plate with

;;,;;.i;ri;;;;pport c-onditions, thJ number of waves is represented by p/a and qdb, where 'p' and

;,";;;';;;i;;iis to be sotved from a system of two transcedental equations, obtained from two

ulu*iiiu.V I-"rry'. type problems, also known as lhe Modified Bolotin Method. The homogeneous

;;i;ffi "; 
d" pioilem is obtained by a method of separation of variables, in such a wav that

,"p..p*r,r"i vrids a solution satisfiing the bounlary conditions. As the mode shapes are expressed

;'d;; 
"'f 

eigenfunctions, the solution of the dynamic problem is obtained on the basis of

;i;il;l,ay pr"ferties of eigenfunctions. The general solution of the response of the plate to the

a.,rr#ic movine load in integral form is obtained from the specific properties of the Dirac-delta

t;;,d .",ft"i-ii""" be furti'er integrated to obtain the various plate response equations^during the

if." i"tJ-"f the load is moving within the plate boundaries, as well as after the load has left the plate'

ili; il"; will give 
"n 

ou"rui"* of the dynamic response analysis of rigid concrete pavements as

described above.

2. SIDESUPPORTRESTRAINT

Side support restraints are provided by the dowels along the transverse joints and by the tie bars-along

;;;ilfui;;ijoints. Dowels are iniended to allow longitudinal movements of the concrete plate to

"""r., 
irf,if" tie'bars are intended to prevent cracking 

-of 
concrete caused by temperature changes.

efii-igf, each steel connecting deviie has different_ functions, both provide similar side support

resirainfs to the concrete plate, rihich are elastic vertical supports and elastic rotational restraints'

Based on a study by Friberg refened to by Baadilla [8], the elastic vertical support stiffness per unit

length ofthe plaie's side f is determined by the following expression:

f=<' 
".( s * z:Poe 

\
" \Go Aa 2B) Ed rd )

where 56 is the steel bar spacing' g is the width ofthe gap betwe€n the two adjoining concrete plates,

C, ir rf," *A shear moduius, Ai-iithe bar cross section area, E6 is the steel modulus of elasticity, Ia is

the steel bar cross section moment of inertia, and p6 is a rigidity factor depending on the steel bar

di"."te. and the embedment length of the bar in the concrete plate. For a 16 mm,22 mm and 25 mm

diameter steel bars, the range ofthe value of pa is as follows :

(r)

The elastic rotational stifftress per unit length ofthe plate's side c is relatively very small, as it is partly

.otifir"a by the steel bars, located at mi; depth oithe concrete plate and partly by the interlocking

effect of the adjoining concrete plates, limiting the related side restraining mo-ment due to traffic loads

;;;i;g; the steel bari to be far below their !i"ld.o-.nt capacity Mv = ll32 (tr Q') fr' where d6 is

the steel bar diameter and f, the yield strength ofthe steel'

The complete model of the rigid concrete pavement under dynamic hafflc loading is as shown on

Figure I .

3. THE GOVERNING EQUATIONS

Based on the classical theory of thin plates, the goveming forced vibration differential equation of a

lhin damped orthotropic plate resting on a continuous elastic Pastemak foundation is as follows:

20 <pd < 40 (2)
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Orthotropic
rigid plate,
thickness= h

EACEF-I59

1.
b:3.5 m

3i:T,'i:'ff;Tr;

Figure l. Model ofthe rigid concrete plate under dynamic traffic loading.

/Ao*) dnw /a'w) A2w aw

"I r"J zeffi -o,[i )' ,n#. rnf r r,*-G,V2w - p,(x.v.tv............. (3)

where w(x,y,t) = transverse deflection; p: plate mass density per unit volume; h: plate thickness; t is
the time; 7 is the damping ratio; k= spring stiffness and Gp: shear modulus of the Pasternak
foundation; pz(x,y,r): dynamic load on the plate; D*, Dr= plate flexural rigidities in the x and y
direction, B: effective torsional rigidity, all of which according to the following expressions:

E"h3 E,ht .. Ghl
Dr= 12(f_vJi) t D,= tZ(t_u,uJ ; s= o-u"? ......................... . . ..(4)

in which E, and E, are elasticity moduli along the x and y axes; G is the rigidity modulus; u* and u, are
Poisson's ratios along the x and y axes.

The dynamic load p2 (x,y,t) modelled as an equivalent concentrated load of harmonically varying
magnitude moving in the x and y directional axes of the plate as shown in Figure I can be expressed as

follows:

P7 (x,y,t) = p [x(t),y(t),t] = PO 5 [x-x(t)] 6[y-y(t)]

P(t)= Po+F = Po(l+dcos.t)

x(t)= vrt and y(t): v2t

.................................... (5)

.................................... (6)

Pz(x,y,t)= Po ll+dcos o)tl
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(7)

where 6[.]= Dirac-delta function; x(t)= (vrt)= position function of the load with speed vl in the x

irrii""rl'vt r6rtj= position n n.ti- oi *,! toad with speed v2 in thry direction; P(t)= concentrated

load of harmonically varying magnitude; P0= mean amplitude.of load; P: additional varying- load due

io..i,. i"i"r""i"r .ti""t of G u"fii"t" ,urpinrion sy.tem, road 
^roughness 

and speed of the vehicle; d =

i;;il;; ";fficieJ,which 
in this paper is taken equal to 0.3; @= angular frequency of the load.

4. BOUNDARYCONDITIONS
ii"" ," ifr. rr" "f 

dowels and tie bars to join the concrete pavement plates, all four sides of the. plate

i"*'i".il" r"nicat translational ,uppott 
". 

well as elastic rotational restraint along the sides' Thus'

ih" bound"ry conditions for each side ofthe plate are as follows:

Elastic vertical support along x=0:

u.-., = o. [*3d]tT}) ryP = r,, w(x, v, t)

Elastic vertical support along x=a:

v.=., ='. [4HP]t{}) ryP = r,v w(x, v,,)

Elastic vertical support along y=0:

u,,=., = o, [qTFD]t==) ry;P = r'. w(x' v''l)

Elastic vertical support along y=b:

u*,=o,[{fi4]t==)+#t=ru.w(x'v't). . (8)

where fr,, fz", fr* and fz* are the elastic vertical translational stiffnesses ofthe support along the sides of

the plate, in'[N/m/m], and

Elastic rotational restraint along x=0:

Elastic rotational restraint along x:a:

6twl aw

a*ol="'" ut

f A'* 6'wl aw
*,-=,,=-D- 

L at' 
+v, 

':l= 
c'' *

f a'w d'wl aw
M6=v= -D" 

I a-t 
* 

", FJ - c" E-

Elastic rotational restraint along y:0' 
"o*,= 

-O, 
[ #. ' 

-

EACEF.I59
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Elastic rotational restraint along y:b:

EACEF.I59

^ [a'* d'wl aw
v,,-0,= -D' 

| 657 
* 

"" ,f ] 
= cz. 

*

where c1r, c2y, c11 .nd c2y ire the elastic rotational stiffnesses ofth" ,.,00". .r;;;;;; ,t;";";;;" ;;":?
in [Nm/rad/m]. It is assumed that the principal elastic axes x,y of the material are parallel to the plate's
sides.

5. GENERALANALYSIS

The dynamic deflection response w(x,y,t) of a plate with arbitrary support conditions is the general
solution of Eq.(3), which consists of the homogeneous free vibration solution wg and the particular
forced vibration solution wp thus:

w(x,y,t)=wp+wp

The homogeneous free vibration solution of the thin elastic orthotropic plate resting on a continuous
Pastemak foundation is govemed by the homogeneous form of Eq.(3). To obtain the homogeneous
solution wg, the Modified Bolotin Method is used, with which firstly we have to find the free vibration
natural frequencies ofa simply supported plate. For that purpose it is assumed that the free vibration
solution of a simply supported plate will take the following form :

(10)

w(x,y,t)= W(x,y) Sin ot

in which the natural modes shape function W(x,y) is a
substituting Eq.(11) into the undamped homogeneous
obtained:

function of the coordinates (x,y) only. By
form of Eq.(3.1 the following equation is

+ kw(x, y, t) - G, 
[4*+D. 

-qa*+q) 

= t (12)

For the plate with all edges simply supported, the following expression will obviously satisry the
boundary conditions:

_. m?Tx n'Iv
W."(x,y,t)= A," Srn-; Sin (or

". [+*).,"*#. o, [+ilo) -,' agD.

(13)

where A,nn is an amplitude coefficient determined ffom the initial conditions, m and n being positive
integers and ro the natural circular frequency of vibration. Substituting Eq.(13) into Eq.(12) gives the
natural circular frequency ofthe system expressed as (ol,n)2 as follows:

t.."r = fr it.c, {(T)' 
.(+)' 

}. ". [T)'.*(T)' (+)' *,(+)'l
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ThenextstepistofindthesolutionofEq.(12)andobtain.theeigen.frequenciesandmode.shapesof''- "iil"o"ir" 
piaie with arbitrary side suiport conditions according to Eq.(8) and Eq.(9). Bv

nostulating the following n"tuJ "i,.ul"' 
ttiiu"n"y eqlation' analogous to the case of a simply

!uppon"a-pfu," at all edges, Eq ( l4) can also be expressed as:

<.,"r = *[r,.c, {(T)'.(T)'}. "" 
(T)'
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(14)

xo

......................... (1 8)

This characteristic equation possesses two imaginary and two real roots; namely:

(p,r). -^E;e)ieef =+k3.............ne)1",.,=t[;J'=+(kr)iandt3.,=-r1D" 1;J o_\. u J 
-

Thus, the solution of the first auxiliary Levy's type problem in the x direction, which is the general

solution of Eq.(17) can be represented as:

X*(x) = ArCos(k1 x)+ A2Sin(kq x) + A:Cosh(kr x) + AnSinh(k: x) (20)

Substitution ofEq.(20) into the boundary conditions for the sides of.the plate at.x=o and x=1::^t::di"c

io gq.(81 and pqiS) will produce 4 boundary equations, which can be put into a matrlx equatlon as

where p and q are real numbers, such that m< p < m+l and n< q < n+l' to be solved from a

<r,ciem nf rwo transcendental equaiions, oUtained from the solution of the next two auxiliary Levy's

ti" piiur".;. ihi. p.o""du." ii known as the Modified Bolotin Method'

6, FIRST AUXILIARY LEVY'S TYPE PROBLEM IN THE X DIRECTION

ThesolutionofthefirstauxiliaryproblemofEq.(12)satisfiingtheboundaryconditionsaccordingto
iq.t8) and eq.tS) can be assumed to have the following form:

w1x,y; = Xixl Sinff

and substituting Eq.(16) into the undamped partial differential equation according to Eq' (12) yields a

fourth order diiferential equation in X(x) as follows:

a,x 
-J 

zs ( qn)' - 
g"lqa. IL1,91')' * 9"1 sl)' * I - 4,,1* = o

;x"-tD-\.b)-D.la.','in.\tl o,,(bJ D. D. )

....... (17)

for which the conesponding characteristic equation is obtained by substituting X(x): 4t)'* 'nto

Eq.(17), which is as follows:

'"(T)'(T)'-,(T)"1

{+r+l.*}" (+)'[#(+)'.(T)'.*]
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follows:

O, =-ilO, - *o, - 
;Orcr=A, 

+d.rAr2 +cr.2Ar3

Ar= - Lt 0-'az-n,-9zJ s.r,a-. 
Arcr = Ar, + ct,A,

a2\ + aBa24 aB + cLBa24

. orr +ct,,a.,o +or,(a,, +cr,raro) 
^^'=-ffi^'

or

4^ =- 
oo, *0,,ooo *0r,(an, *0,roon)4,

' ao, + o-rraoo + orr(ao. + cr,raoo) '

EACEF-159

(2t)
f;,, i': i': ;;l[l;l_[:l

l::: i',:" i'":" llltj [:i
The requirement for the existence ofa non-trivial solution yields the first transcendental equation:

f 
u,, dtz d,, u,. 

'l

I a' dzz azt aro I ^ott 
I ur, atz u' uro I 

= ...'...'(22)

Luo, ?qz un, u*)

and the linearly dependent coefficients Ai of the mode shape function X(x) according to Eq.(20) as
follows:

............................... (23)

7. SECOND AUXILIARY LEVY'S TYPE PROBLEM IN THE y DIRECTION

The solution of the second auxiliary problem ofEq.(12) satisfring the boundary conditions according
to Eq.(8) and Eq.(9) can be assumed to have the following form:

_. Dtrx
w(x,y)= Y(Y) Srn 

-
................................ (24)

By following the same procedure as in the derivation of Eq.(l8), the following characteristic equation
is obtained:
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Therequirementfortheexistenceofanon-trivialsolutionyieldsthesecondtranscendentalequation:

[0" b'' b'' o''l

*|::i :; i; i; l-
Lb., bo, b" b*l

EACEF-I59 l.,.-Jr"1,es)'*9rir,-fq"'1'fzeIp")'.1+]'.Pl=......................(2s)r-tD,l.;J -o,l^ -\u) fu'\.u/ \bi D,l

which also possesses two imaginary and two real roots' namely :

,,,,-.[T),=.,nn,""ur*=,ff{f,T*fr$=+k4 (26)

which will yield the solution of the second auxiliary Levy's type problem in the y direction:

Yeqg)= BrCos(kzy) + B2Sin(kry) + B:Cosh(lq v) + BrSinh(fu y) """"""""""'(27)

Substitution of Eq.(27) into the boundary conditions for the sides of the plate at y:0 and y:b

according to Eq.(8) a"a eq tv 
j'i""irii'iJ'i"" + ttllnouty equ"tlont' which can be put into a matrix

equation as follows:

(28)::l ll
B,l lol
n.J \o,J

f 
o" b'' b"

Iu". b,, b,,

lr,, o" b,,

[u., bo, bo,

I

Qe)

and the linearly dependent coefficients Bi of the mode shape function Y(y) according to Eq'(27) as

follows:

u, =- ffi", - ffi B'B=B'' +P'B"

o - - 
b,,+P,,bro + Fr, (.b,, + P,,bt) g,P2 
brr+F,rb" + F, (br + 9,rb" )

of

o - - 
bo,+9,,b' + Pr, (b* + F,rb*) g,P2 
bo"+9,,b* + 9, (b" + F,,b* )

8. NATURAL FREQUENCIES AND NATURAL MODES

.rhe characteristic determinants expressed bv Eq'(22) and.Eq (2?Jr'f:r5::iffLtltfil"1l,'lf,i"lh'liJi

^ii"ii"tt. ""tt"r 
ofroots p and q This unknown quantrtles p

of these equations. ny .ub"tttuiin! ; ffi;T";;.tgGi, ir'" 'n.tu.r'"it.ular frequencies of the plate

with arbitrary suppo.t conctt'o'it i'-"i it 
"tti"i""a' 

The integcr p"tt ofthe real roots p and q represents

the number of the natural 
"t*i,fir' 

f."0"!*. if," nutur"j niJ"" "* determined as the following

product:

b,n

brn

b,o

bo4

lhieen'itas Pelita Harapan, INDONESIA - Septenber 26-2/h' 2007
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woo= Xoo(x)Ypq(y)

where X*(x)and Ypq(y) are according to Eq.(20) and Eq.(27) respectively.

9. HOMOGENEOUS SOLUTION wn

The general homogeneous solution of the partial differential Eq.(3) can be obtained by a method of
separation of variables. This technique is particularly useful for the direct solution of boundary value
problems, where the boundary conditions have a simple form. The procedure comprises the derivation
of a sequence of solutions of a separable form, in such a way that superposition yields a solution
satisrying the boundary conditions. According to this method, the general homogeneous solution of
Eq.(3) is set to be separated into a time domain function and spatial functions as follows:

wg = woo(x,y,t) = w(x,y)T(t) = Xoo(x) Yoo$) T(t) : X Y T

Substitution of Eq.(32) into the homogeneous form of the partial differential Eq.(3) will separate the
differential equation by a separational conslant p, into two partial differential equations as follows:

r*4i*at=oph ph

D. 
x'u 

+28 
x"Y" 

+ D..-X XY

' [-*'{[+)'.[+l]-.(+i

EACEF-I59

.....'.....'...'.'............ (31)

.............................. (33)

............................... (34)

*,(T)'] (3s)

(32)

The separational constant P can be obtained by substituting X=A6Sin[pnx/a] and Y:BeSin[qury./b] into
Eq.(34) and after reananging for p, the result is as follows:

rr.o-o,[+.u+)='

*2Br11)'r!t)'
la/[b/

The linear second order differential equation Eq.(33) has the form of the already well known damped
free vibration system. The frequencies ofthe damped free vibration system can be obtained and can be

defined as follows:

20*: ........................ (36)

By assuming that viscous damping only is present in the system, the following relationship applies:

,-c - cL___-...... . ............(3i)' cr 2mco*

where ( = damping ratio; c = damping constant, which is a measure of the energy dissipated in a
complete cycle ofvibration; c. = critical damping.

By using Eq.(36) and Eq.(37), the linear homogeneous form ofthe second order differential equation

B

ph
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T+2(ooo f +ooo'T=o

The substitution of a solution in the form of T(t):est into Eq (38)' with the constant S still unknown'

iliith;;;. s'' .2 of the characteristic equation as follows:

s'z + 2(o*S + (oo.) = 0 and the roots s,o, = to. (- q ti [:-)

so that the temporal function T(t) can be obtained as follows:

Toq(t)= Ao 
"s't ''go 

es't = e{'*' (aot'["*.,*' + boe'tJ-r{%*' 
) -

= "-('*t 
(aoCostDet + bosinoDt)

where the constants a0 and b0 can be determined from the initial conditions'

SincethespatialfunctionsX*(x)andYpo(y).and^thetemporalfunctionT*(t)arealreadyobtained,the
ilffi:;;J;;ilil" "i'r'Jr"*.a 

uiti'Liii,n differentiai equation is the product of the two tunctions

as follows:

wpq(x,yJ)=XmYroTo = [Xoo(x)Ypr1r11t-t'*'(uooot'ff'*' 
+ bo*"-'[s*') " " " " tot'

Usine the onhogonality property of the eigen functions. the total elastic response of the system is

obtai-ned by superposing a"r"..Li*, .riit?- -"J". i. the form of series expansions. The complete

homogeneous solution of the p"ii"r^Jii*""i"i 
"!u"tlon 

Eq.(3) for each m=p and n=q can finaly be

expressed as:

*" = .+, "+, 
[x,, (x)\' o)] "t'*' (uooot'f,"tt*' * booo"'6t*' 

) 
:

= i i [xrrt")v,r{v)] "'r'*' 
(aocostoot + bosin<rrot)

Group of Structure and Construction (lnvited Speaker)

Eq.(33) can be put in the following form:

wp = woo(x,y,t) = tI,x*G)Y*(Y)T*(t)

whereTpq(t)isthetemporalfunction,whichmustbedeterminedthroughfurtheranalysis.

The differential equation for the temporal function T*(t) can be expressed as:

m=tpl=l n=tql=l

r-=
where oo {l-(''*

10. DYNAMIC RESPONSE OF THE PLATE

Since a fundamental set of solutions of the homogeneous- partial diffrentail equation is known and

given by the eigenfunctions, it i" 
"pp"."p.i"i" 

t" *"ii"."tftira "f "ariation 
of pirameters as a general

method of determining u pu.trclit".-'.ot,rtion wp of the corresponding tton-ho-ogeneous partial

liii**r*r equation, *f,ictt ian be written in the following form:

(38)

(3e)

(40)

(42)

(43)

(Jniversitas Pelito Harupa, IN DONESIA - Septehber 26-2/h' 2007
c-325



EACEF-I59

f. f , 
x,, t*)v,, 1yy 

&$9 axay .............. (44)

where P7(x,y,t) is an arbitrary dynamic load and Qoo a normalization factor.

Note that the homogeneous solution of Eq.(44) is identical with the solution of the homogeneous

differential equation Eq.(38). The total solution ofEq.(44) consists ofthe homogeneous solution and a

particular solution:

T*(t)= t* (t) + T*oq(t)

*h"r" t* (t) is the homogeneous solution as expressed by Eq.(40) and T** (t) the particular solution
which can be represented in a form ofthe Duhamel's convolution integral as follows:

r*^(t) = fffi f ."oot*)dx foY*(vravffisi,'.Ft',-(t,)]. ....... (46)

The homogeneous solution \r(t) contains constants that must be determined 
-IL 

^,:lture of the

steady sta; forced responses oithe plate is contained entirely in the functions rpq(l) defined by
Eq.(46). Substituting the expressions for the coefficient functions in Eq.(46), the general solution for
th; forced response deflection of the plate to an arbitrary dynamic load P2(x,y,t) is given in integral

form as follows:

*,,(-,y.,)=tpx*(x)\,(v)[e 
('*'Iaooocosl',,/-t-f 

roeqt]+ b'eqcoslJ-l-f r,lootl]+e-('*'

[lWf,x*(')dxfrY,.(v)dv1ftsin''[-t-fcooo(t-t)dr]] 
t,

The general equation presented above may be integrated to determine the response of the plate to an

arbitrary dynamic load P7(x,y,t).

In Eq.(47) the constants aopq and bopq must be determined from the initial conditions 
"1 

1=6 and

reprei"nt a transient state vibratory motion resulting from the initial conditions. In the remainder of
this paper, attention will be centered on the dynamic response of the system subjected to the dynamic
load described by the loading functions according to Eq.(5), Eq.(6) and Eq.(7).

Bending moments and vertical shear forces in the plate can be computed in terms ofthe deflection and

its derivatives obtained from Eq.(47) as expressed by the following equations:

( A'* 62w \ - ( d'w dtw)
Bendingmoment., 

",=-D*[-^rfir41 ); v,--ul[6yh" a*;J

..=-*[".#*#), o,=-*(',#."#)

Group of Structure and Construction

i* {t) + 2er* t* {t) + .*'.T*{t) =

Shear forces:

(4s)

where:

g =r*D, + 2G", = urD* + 2G*, is the effective torsional rigidity of the orthotropic plate.

4G.,, B +2G,.,H"=')-ty=- is the plate stiffness constant (vertical side forces) along the sides

Verticar edge rorces: V":-D" [#*" #]' u,:-o,[S*t, *,*jo]
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x:0 and x=a.

istheplatestiffilessconstant(verticalsideforoes)alongthesides
y=0 and 5-b'

Po=80 lrOI, v, =20 m/det' v I =2 m/de'

I

,,=,+.,=tt#

1T. NUMERICALEXAMPLE

Toillustratetheuseoftheproceduredescribedinthispaper'alldowelsandtiebarsareassumedto
have the same elastic vertical ri,ir:i":"""llJriport ana furi ,uo'. 

"iutti" 
totutional res'aint' The plate

"ioiii 
otrt"t p*uteters are as follows'

Concrete pavement plate dimension and material:

Lensth of the plate parallel to tlte traffrc direction -a=-5'0 
m;'width of lane b= 3'5 m; thickness h=

0.2{m:E=27 GP"; E-= 22'"s E;; 
"= 

o'is: uro'rs; r isoo t'etrt''

Pastemak fouodation: 
hear modulus Gp= 9'52 MN/m'

Foundation's spring stiffiress le 2?'2 MN/m3; foundation's s

Side support restraint of the pavement plate:

Elastic vertical translational stifhess of support along all sides ofihe plate:

f1,.= fr-: 40 MN/m/m; nr= f,r= .19tlY-Y,1' 
Elastic rotational stiftess of support along the sides

oi,n" pfutt' c,^= c2'= ct;= czv= 1'0 Nm/racum'

Dynamic traffic load:

Wheel equivalent single axle load P0= S0 \Nl dynamic load-coefficient d=0'3; travelling velocity in

the traffrc direction vl: ?iktfr;; = zo 
"v'""'; 

t'uu" i"l u"lotity perpendicular to the traffic

direction v2= 2 m/sec'

Usingtheabovedata,variouswavenumbers,naturalcircular.frequencies,deflectionresponsespecha,
defleition shapes, deflection #iiniJ"ilr,'pra;uoa 3oint i^t i*li".tt have been 

'omputed 

and

some ofthe reiults are shown here'
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Figure 2.
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5o

Figure 3 . Dynamic deflection surface of the plate due to tho moving dynamic traffic load during the

interval 0 < t < to : 0,25 sec.; E: 5o/o, a:200 radlsec.
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Fig. 4, Various dynamic responses of the plate to the dyramic taffi cload; (= 5y", o = 200 rad/sec.
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12. CONCLUSION

Based on the study and the numerical example given above it can be concluded, that it is possible to
find a mathematical closed solution for the dynamic response ofa rectangular rigid concrete pavement
plate with arbitrary side support elastic vertical translational and rotational restraints to dynamic traffic
loads. The result however should be verified further with the results of experimental research,
especially on the determination ofthe forces in the steel connecting devices at the joints.
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