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SUMMARY 
 
An approximate method is presented for the determination of the natural frequencies and mode 
shapes of rectangular clamped orthotropic plates subjected to dynamic moving loads. The 
natural frequencies of a clamped plate are presented in a form analogous to the corresponding 
frequencies of a simply supported plate. The wave numbers are the unknown quantities that can 
be determined from a system of two transcendental equations, obtained from the solution of two 
auxiliary Levy’s type problems. The general solution for the forced response is given in an 
integral form based on Duhamel’s method. A numerical example is further discussed. 
 

INTRODUCTION 
 

Widespread use of filamentary composite materials in several fields of modern 
technology has made it desirable to investigate the dynamic behavior of plates under the effects 
of material anisotrophy. Analytical and experimental studies of small deflection free vibration of 
orthotropic plates had been carried out by many authors. The most comprehensive study had 
been done by Leissa [5]. An exact solution of the differential equation of a vibrating orthotropic 
plate had been found for the case of a rectangular plate, simply supported along one pair of 
opposite edges, known as Levy’s problem. The exact solution for the plate with all sides 
clamped was so far unknown. In the mean time a considerable number of approximate solutions 
could be found in the literature for several combinations of boundary conditions, including the 
case of clamped plates. Elishakoff in 1974 [4] investigated the dynamic response of a clamped 
square orthotropic plate. As a point of departure in his analysis, the frequencies were presented 
in a form fully analogous to the corresponding frequencies of a simply supported plate. For a 
simply supported plate, the wave numbers were taken equal to mπ/a and nπ/b respectively, 
where a and b denoted the lengths of the side of the plate and m and n were positive integers, 
determining the number of mode shapes. 
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 The present analysis deals with the dynamic response of a rectangular clamped 
orthotropic plate subjected to a dynamic transverse moving load. In this analysis, the wave 
numbers are adopted from the work done by Elishakoff in 1974. These wave numbers are 
presented in the form pπ/a and qπ/b, where the pair of real quantities p and q are to be found 
from the solution of two supplementary eigenvalue problems. The integer parts of p and q 
represent frequency numbers. The mode shape is presented as a product of eigenfunctions. The 
dynamic solution of the plate is based on orthogonality conditions of eigenfunctions similar to 
those used by Alisjahbana, S.W. [2] in analyzing forced responses of simply supported 
rectangular orthotropic plates subjected to the dynamic transverse moving load. The dynamic 
response of the plate can be expressed in integral form that can be readily integrated to 
determine the plate responses for any applied surface loading p(x,y,t). 
 

ANALYTICAL FORMULATION  
 

Free small amplitude vibrations of a thin, elastic orthotropic plate as shown in Figure 1 are 
governed by the linear partial differential equation 
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where Dx and Dy are flexural rigidities and are defined by 
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in which Ex and Ey are Young’s moduli along the x and y axes respectively, G is the rigidity 
modulus, υx and υy are Poisson’s ratios for the material, for which Exυy=Eyυx, ρ is the mass 
density per unit volume of the plate, h is the plate thickness, t is the time, γ is the damping ratio. 
It is assumed in Equation (1) that principal elastic axes of the material are parallel to the plate 
edges. 
 If the free vibration solution of the problem is set as 
 

tsin)y,x(W)t,y,x(w ω=                           (3) 
 
where ω is the circular frequency and W(x,y) is a function of the position coordinates only, then 
by substituting Equation (3) into the undamped form of Equation (1) yields 
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Figure 1. A rectangular clamped orthotropic plate subjected to a dynamic transverse load. 
 

For a plate with all sides simply supported the boundary condition is 
 

0)y,x(W)y,x(W 2 =∇=                (5) 
 
where 2∇  is the Laplacian operator. 
 

For a plate with all sides clamped the boundary condition is 
 

0
)y,x(W

)y,x(W =
τ∂

∂=                (6) 

 
where τ denotes the direction normal to the contour of the plate. 
 For the plate with all sides simply supported that satisfies Equation (5), it can be seen 
that W(x,y) can be expressed as 
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where Amn is an amplitude coefficient determined from the initial conditions of the problem and 
m and n are positive integers. Substituting Equation (7) into Equation (3) gives the natural 
frequency of the system 
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The purpose of this paper is to find the solution of Equation (3) with the boundary 
conditions according to Equation (6), i.e. the eigen frequencies and the mode shapes of a 
clamped orthotropic plate. By postulating the following eigen frequency, which is analogous to 
the case of a plate with all sides simply supported [4], Equation (8) can be expressed as  
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where p and q are real numbers which are to be found. 
 These two real numbers p and q can be determined by considering two auxiliary 
problems of Levy’s type [4]. 
 
First Auxiliary Problem  
The solution of Equation (4) for the first auxiliary problem that satisfies the boundary conditions 
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can be expressed as 
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Substituting Equation (11) into Equation (4) results in an ordinary differential equation for X(x) 
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or, given the postulating Equation (9), one obtains 
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The corresponding characteristic equation 
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which has two imaginary and two real roots, namely 
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where  
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The general solution of Equation (13) can be represented as 
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where Aj are constants of integration and 1
x
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When Equation (17) is substituted into Equations (10), the existence of a nontrivial solution 
yields the characteristic determinant 
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By expanding Equation (18) and by substituting Equation (15) into the result gives 
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Second Auxiliary Problem 
Solution of the second auxiliary problem of Equation (4) can be expressed as 
 



6 

p x
W(x, y) Y(y)sin

a

π =  
 

              (21) 

 
which satisfies the boundary condition 
 

dY(y)
Y(y) 0

dy
= =  at y=0,b              (22) 

 
The solution of this problem can be obtained from the solution of the first auxiliary problem. 
The characteristic equation for the second auxiliary problem can be expressed as 
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which has two imaginary and two real roots, namely 
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The general solution of this second auxiliary problem can be represented as 
 

( ) ( ) ( ) ( )1 2 2 2 2 2 3 2 4 2Y(y) B cosh B sinh B cos q a B sin q a= κ πη + κ πη + πη + πη        (26) 

 

where Bj are constants of integration and 2
y

ab
η = . 

 
By substituting Equation (26) into Equation (23), one obtains the following characteristic 
determinant 
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where 
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Expanding Equation (27) and substituting Equation (24) into the result gives 
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FREQUENCIES AND MODE SHAPES 

 
Equations (20) and (29) being transcendental in nature, have an infinite number of roots. 

The unknown quantities p and q are calculated from the solution of these equations. By 
substituting p and q into Equation (9), one obtains the eigen frequencies. The integer parts p and 
q represent the numbers of the eigen frequency. The mode shapes are determined as the product 
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HOMOGENEOUS SOLUTION 

 
The homogeneous solution of the problem can be obtained by a method of separation of 

variables. This technique is particularly useful for the direct solution of boundary value 
problems, where the boundary conditions have a simple form. The procedure comprises the 
derivation of a sequence of solutions of a separable form, in such a way that superposition yields 
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a solution satisfying the boundary conditions. According to this method, the general solution of 
Equation (1) is set to be separated into functions of space and time, 
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in which Xm(x) and Yn(y) are the spatial functions expressed by Equations (31) and (32), Tmn(t) 
is the temporal function, ωmn is the natural frequency of the system, γ  is the damping ratio, amn 
and bmn are constants, m and n are numbers of modes in x and y direction respectively that are 
equaled to the integer parts of p and q. The eigenvalues, denoted by αmn are related to the 
undamped natural frequencies of vibration of the plate through 
 

( )24
mn mnhα = ρ ω                (34) 

 
DYNAMIC RESPONSE OF THE PLATE 

 
Consider the case of the moving load with constant approaching speed v along the x 

direction. The load may be expressed as P0cosωt. At t = t0, in which t0 = a/v, the load leaves the 
plate. Thus, this problem may be treated in two parts. The first part involves a harmonically 
oscillating concentrated transverse load moving in x direction at a constant yo position. The 
second part, in which the load is no longer on the plate, involves a free vibration response of the 
system. The two parts of the problem are related through the boundary conditions. The motion of 
the plate at t = t0 due to the load at y = y0 becomes the initial condition of the plate at the 
subsequent instantaneous loading change at t = t0.  

Using the above principles, the motion during an interval of time in which the load is no 
longer on the plate can be computed. Assuming the motion has achieved steady state prior to the 
load leaving the plate, the motion at t = t0 may be easily computed. This motion at t = t0 
determines the initial condition for the second part of the problem. The response of the system 
can be easily computed by the following equation: 
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in which womn and vomn in Equation (35) are the initial deflection and velocity at t = t0. 
Bending moments and the vertical shear forces in the plate can be computed in terms of 

the deflections obtained from Equation (35) from the following expressions: 
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where H=B+2G and G is the elastic shear modulus of the plate. In terms of elasticity moduli and 
Poison’s  ratios, the flexural rigidities and the effective torsional rigidity can be expressed as 
follows : 

( ) ( )
33

yx
x y x y

x y x y

E hE h
D ; D ; B D D

12 1 12 1
= = =

− ν ν − ν ν
         (37) 

where Ex and Ey are the elasticity moduli in the x and y direction respectively, νx and νy are the 
Poison’s ratios in the x and y direction respectively and h the thickness of the plate. 

 
NUMERICAL EXAMPLE 

 
Using the procedure of the last section, some results have been obtained for a rectangular 

clamped orthotropic plate subjected to a dynamic moving load. It is shown how the total 
dynamic deflections are affected by the load’s frequency ω and by the damping ratio ( γ ). Three 
cases have been calculated for which γ  is equal to 0, 0.05 and 0.1, representing the damping 
factors for engineering structures. The transverse dynamic load is Po = 1000 N, traveling with a 
constant speed v = 0.8 m/sec. along the x.  

 
Table 1. Computed natural frequencies of the rectangular clamped orthotropic plate. 
 

m n p q ω (rad/sec) 

1 1 1.408 1.3678 15.1679 
 2 1.295 2.4481 23.5972 
 3 1.2352 3.4763 37.8947 
 4 1.1379 4.4878 56.7479 
 5 1.1113 5.4919 81.3999 

2 1 2.4695 1.2321 36.6158 
 2 2.4059 2.3659 44.6106 
 3 2.3421 3.4281 57.9065 
 4 2.2865 4.4543 76.4172 
 5 2.2511 5.4692 100.4890 

3 1 3.4846 1.1951 69.1955 
 2 3.4488 2.3041 76.9268 
 3 3.4062 3.3674 89.7048 
 4 3.3572 4.4132 107.5950 
 5 3.3292 5.4382 131.2740 

4 1 4.4912 1.1612 112.5750 
 2 4.4698 2.2311 119.9670 
 3 4.4391 3.3221 132.7480 
 4 4.4036 4.3699 150.2760 
 5 4.3684 5.4042 173.0160 
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The following numerical results have been calculated for the case of a thin rectangular 

clamped orthotropic plate with dimensions and characteristics as follows: a=15m, b=20m, 
ρ=2400kg/m3, h=0.12m, Ex=30x109N/m2, Ey=20x109N/m2, υx=0.2, υy=0.1, G=1010N/m2. 
 Based on the data shown above, the natural frequencies of the plate for the first 4 modes 
in x direction (m=1,2,…,4) and the first 5 modes in y direction (n=1,2,…,5) are calculated. 

Table 1 shows the natural frequencies of the system for the first 4 modes in x direction 
(m=1,2,…,4) and the first 5 modes in y direction (n=1,2,…,5). It can be seen from the table that 
the natural frequency increases as the mode number increases. 

Figure 2 shows the dynamic response spectra as a function of the load’s frequency and 
damping ratio. It can be seen that the dynamic deflection will be maximum when the load’s 
frequency approaches the value of the first natural frequency of the orthotropic plate. 

Figure 3 gives an overview of the dynamic deflection shapes due to the transverse 
moving dynamic load. 

Finally, Figure 4 shows the various responses of the clamped orthotropic plate to the 
moving transverse load. By comparing the case at near resonance condition and that away from 
resonance condition, one can recognize the significance of avoiding the resonance condition, 
since at resonance the various responses are apparently relatively very high. 
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Figure 2. Maximum dynamic deflection response spectra for various values of load’s frequency. 
Load’s parameter: P0=1000N, t0=18.75sec, v=0.8 m/sec, y0=5m. 
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Figure 3. Examples of the total dynamic deflection mode shapes of an orthotropic rectangular 
plate clamped on all sides during the interval t<t0 for m=1,2,…,4 and n=1,2,…,5. Load’s 
parameter: P0=1000N, ω=20 rad/sec, t0=18.75 sec, γ =5%, v=0.8 m/sec., y0=5m. 
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γ =5%, ω=15 rad/sec γ =5%, ω=20 rad/sec 

  
γ =5%, ω=15 rad/sec γ =5%, ω=20 rad/sec 

  
γ =5%, ω=15 rad/sec γ =5%, ω=20 rad/sec 

  
γ =5%, ω=15 rad/sec γ =5%, ω=20 rad/sec 

Figure 4. Various dynamic responses of the plate at near resonance condition (left) and away 
from resonance condition (right).  
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CONCLUSION 
 

Based on the above study, the following conclusions can be drawn. 
The use of two transcendental equations and the use of two Levy’s type solutions to 

approximate natural frequencies and mode shapes of vibrating clamped rectangular orthotropic 
plates lead to very accurate results. This approximation is more convenient than the Bolotin’s 
method, for example, because it provides a very simple way to derive the transcendental 
equations for the unknown wave numbers and leads to the determination of mode shapes for the 
entire region of the plate. The essential advantage of the presented method is the possibility of 
finding the frequency and the mode shape for any given pair of mode numbers. 

The maximum dynamic deflection response spectra for various values of load’s 
frequency may be used in the design of an orthotropic rectangular plate to determine response 
deflection, and to avoid the resonance condition.  
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