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Abstract 
In this paper the dynamic response of rigid roadway pavements to moving dynamic 
loads is investigated. To solve this problem, the rigid pavement is modelled as a 
rectangular damped orthotropic plate resting on a continuous elastic foundation. 
Assuming the plate to be simply supported, the natural frequencies are computed, 
whereby the wave numbers are irm/a and nn/b, 'a ' and ' b ' denoting the length of the 
plate in the x and y direction and m and n being positive integers, determining the mode 
number. The mode shape is presented as a product of eigenfunctions. The dynamic 
loading function is described as a concentrated load of harmonically varying magnitude, 
travelling with a constant speed. Such a loading may be considered representing a truck 
wheel load moving on a roadway pavement. The general solution for this loading 
function is derived in integral form, which is then solved to obtain the forced responses 
of the plate. The purpose of this paper is to illustrate and demonstrate the applicability of 
this theory by presenting the analysis of the natural frequencies of an example rigid 
roadway pavement and its dynamic response deflections, bending moments and shear 
forces due to the dynamic loading of a passing truck. 

1. Introduction 
Numerous plate elements used in civil engineering, aerospace and marine structures are 
supported by elastic or viscoelastic media and subjected to dynamic loads. The usual 
approach in formulating these problems is based on the inclusion of the foundation 
reaction into the corresponding differential equation of the plate: The foundation is very 
often a complex medium, but since of interest here is the response of the plate, the 
problem reduces to finding a relatively simple mathematical expression, describing the 
response of the foundation at the contact area. The simplest representation of a 
continuous elastic foundation had been provided by Winkler [1] by assuming it to 
consist of closely spaced independent linear springs. It presumes a linear force-deflection 
relationship, so that if a deflection w is imposed on the foundation, it resists with a 
pressure k|W, where k| is the foundation modulus. Some of the more recent studies 
dealing with the stability and the dynamic response of an orthotropic plate included work 
by Paliwal & Gohsh [2], who determined the stability of orthotropic plates on a Kerr 
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3. Forced response 
Since a fundamental set of solutions of the homogeneous partial differential equation is 
known and given by the eigenfunctions, it is appropriate to use the method of variation 
of parameters as a general method of determining a particular solution of the 
corresponding non-homogeneous partial differential equation. Using the characteristic 
function from Eq.(2), an appropriate solution for the forced response may be written in 
the form: 
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where Tmn (t) is a function of time, which must be determined through further analysis. 
After substituting Eq.(7) into Eq. ( l ) the governing non-homogeneous partial differential 
equation can be put in the following form: 
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The differential equation for the coefficient functions Tmn(t) may be obtained by 
multiplying both sides of Eq.(8) in turn by either sin [nutx/a] or sin [n7ix/b] and 
integrating over the plate region 0<x<a;0<y<b. Thus an ordinary differential equation for 
Tmn(t) is obtained in the following form: 
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where y = [y/2pcomn] is a damping factor ratio and Qmn a normalization factor. Note that 
the homogeneous solution of Eq.(9) is identical with the one previously obtained using 
the separation of variables solution method. The total solution of Eq.(9) is then 

Tm„(t)=fmn(t)+r (t) (io) 
where Tmn (t) is the homogeneous solution and T*mn(t) the particular solution that can 
be represented in a form of the Duhamel convolution integral as follows 
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The homogeneous solution t m n ( t ) contains constants that must be determined from the 
initial conditions, representing a transient state of vibration. The nature of the steady 
state forced responses of the plate is contained entirely in the functions T*mn(t) defined 
by Eq.( l l ) . Substituting the expressions for the coefficient functions in Eq . ( l l ) , the 
general solution for the forced response deflection of the plate to an arbitrary dynamic 
load p(x,y,t) is given in integral form by 
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conditions for the second part of the problem. The response deflection of the system can 
be computed from the following equation: 
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in which womn and vomn are the initial deflection and velocity at t = t0. Bending moments 
and vertical shear forces in the plate can be computed in terms of the deflection and its 
derivatives obtained from Eq.(16) from the following expressions: 
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where H=B+2G and G is the elastic shear modulus of the plate. The flexural rigidities 
and the effective torsional rigidity can be expressed as follows : 
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where Ex and Ey are the elasticity moduli, while vx and vy the Poison's ratios in the x 
and y direction respectively and h the thickness of the plate. 

5. Numerical example 
Using the procedure described above, a roadway pavement subjected to the moving 
dynamic wheel load of a truck will be analysed. The effect of changing the load's 
angular frequency co and the damping ratio y will be investigated. The average wheel 
load is P0 = 104 N, travelling with a constant speed v = 60 km/hr along the y direction. 
The following numerical results have been calculated for the following case: a = 7m, b = 
20m, p = 2.4x103 kg/m3, h = 0.35m, Ex 

0.1, G = 10 , 0N/m2 , k, 
30x10 W m ' , 

7.5xl07N/m2 /m, x0 = 3.5 m. 
E y = 2 0 x l O y N / n r , vx = 0.2, 

Table 1. Natural frequencies of the plate for the first 5 modes 
n m=l n m=2 n m=3 n m=4 n m=5 

comn COmn COmn C O m n C O n i n 

(rad/sec) (rad/sec) (rad/sec) (rad/sec) (rad/sec) 
1 340.582 1 442.833 1 734.738 1 1209.36 1 1845.46 
2 424.688 2 514.072 2 783.805 2 1243.36 2 1870.97 
3 536.314 3 614.723 3 859.38 3 1298.05 3 1912.73 
4 661.676 4 732.765 4 955.192 4 1370.95 4 1969.71 
5 794.296 5 861.076 5 1065.8 5 1459.34 5 2040.63 
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Figure 3. Dynamic responses of the plate at near resonance condition (left) and away from it (right). 
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