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RESPONSE DYNAMICS OF R I G I D R U N W A Y P A V E M E N T S 

Sofia W. A L I S J A H B A N A 1 , Wiratman W A N G S A D I N A T A 2 

ABSTRACT: In this paper response dynamics o f r igid runway pavements subjected to moving 
dynamic loads are investigated. To solve this problem, the rigid runway pavement is modeled as a 
damped rectangular orthotropic plate resting on a Pasternak foundation. This type o f elastic foundation 
model is introduced to accommodate shear reactions between the spring elements. The rigid runway 
pavement's natural frequencies are presented in a form analogous to those o f a simply supported plate 
as wave numbers. These wave numbers are determined from a system of two transcendental equations, 
obtained from the solution o f two auxiliary Levy's type problems, also known as the Modified Bolotin 
Method. The dynamic loading function is described as a traveling concentrated load o f harmonically 
varying amplitude moving suddenly to a new position at t=to and continues to travel with a constant 
speed. The response dynamics of r ig id runway pavement are expressed in integral form that is readily 
to be solved using the Duhamel integration method. The results determine the forced responses o f the 
runway slab under the action of the moving wheel load o f the aircraft during landing. 
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1. I N T R O D U C T I O N 

The study of the dynamic responses o f a plate resting on an elastic foundation such as the Pasternak 
foundation subjected to moving loads is important, as the results may contribute to the understanding 
o f the dynamic behavior o f runway and roadway pavements. In the analysis o f runway pavements o f 
airports, the structure is usually modeled as an orthotropic plate resting on an elastic foundation. In 
general, loads on these types o f structures are moving loads such as the wheel loads from moving 
planes during take of f and landing. Static and free vibration analyses of plates resting on an elastic 
foundation had been studied extensively, for example by Saha [1] , Matsunaga [2] and Pevzner et al. 
[3], Dynamic response of plates resting on an elastic foundation has attracted much less attention. 
Gbadeyan and Oni [4] gave a closed form solution by using a double Fourier sine integral 
transformation to analyze a simply supported rectangular plate resting on an elastic Pasternak 
foundation subjected to an arbitrary number of moving concentrated masses. Huang and 
Thambiratnam [5] had investigated the dynamic response of plates on elastic foundation subjected to 
moving loads by using the finite strip method and a spring system. In the numerical analysis, the 
Wilson-9 method is adopted for direct integration. It is important to note that in most actual structures, 
the support conditions o f the plates are both complex and irregular as required by the engineering 
designs. Runway pavements of military aircrafts are often subjected to high levels of acoustic 
pressure. Therefore, the runway pavement may vibrate with large amplitude displacements, i.e., wi th 
geometrical nonlinearity. Such nonlinearity may cause multi-modal interaction and lead to internal 
resonance. One of the most efficient methods to avoid damage due to internal resonance is to 
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introduce irregular internal supports [6]. The problems of plates with an irregular support condition are 
far more complicated to be numerically solved. What is the most relevant to the present work is the 
use o f the Modified Bolotin Method for solving the vibration modes o f rectangular plates [3] . Previous 
extensive studies o f the dynamic response o f plates supported by an elastic foundation with simply 
supported and unsymmetrical boundary conditions had been investigated by Alisjahbana and 
Wangsadinata [7-8]. 

One objective o f this paper is to call further attention to the dynamics of runway pavements subjected 
to aircraft loadings, modeled as orthotropic rectangular plates supported by a Pasternak foundation 
with unsymmetrical boundary conditions. The solution o f the problem is illustrated by the results of a 
case study. Another objective is to demonstrate the application o f the Modified Bolotin Method in 
handling this class o f problems. Results o f dynamic response analyses are presented and the effects of 
harmonic load frequency, moment distribution, shear distribution and response spectra o f the system 
are further shown. 

2. T H E P R O B L E M A N D M E T H O D S OF S O L U T I O N 

The problem of the dynamic response of a runway pavement modeled as an orthotropic rectangular 
plate supported by a Pasternak foundation with unsymmetrical boundary conditions is described. The 
Modified Bolotin Method is only briefly described in this section, so that the reader should refer to the 
original work for more detailed information [3] . 

2 .1 . PLATE VIBRATION 

Although the attention is limited to the vibration o f classical rectangular Kirchhoff plates with simply 
and transversely supported edges, the method can be applied to many other applications in solid 
mechanics. Let us consider a rectangular orthotropic plate supported by a Pasternak foundation of 
length a, width b, thickness h, mass density p, flexural rigidity in x and y direction respectively D T and 
Dy, torsional rigidity B, foundation's spring stiffness kfi foundation's shear modulus Gs, Poisson's ratio 
in x and y direction respectively Ux and Oy. The origin of the Cartesian coordinates (x,y) is set at the 
upper left comer o f the plate. The governing differential equation for the orthotropic plate is given by 

' dx* dx'dy 
d*w d4w , 2 i ^ 
~2^T + Dy~TT~P™ w+kfw-G, 

d2w o2w 

dx2 + dy2 

= 0 (1) 

where w(x,y) is the transverse deflection o f the mid surface o f the plate and co is the circular frequency. 
The two considered types o f support conditions for each plate edge are as follow: 

For simply supported edge 

o w o w 
-D I — - + v — - 1 = 0; w = 0 along y=0 and y=b 

1 dy ' dx 1 

(2) 

For transversely supported edge with non uniform elastic rotational restraint 

I d2w 82w\ dw . . A 

-D\-eV+v>--oy) ^ " = 0 a l o « g * = ° 

_ (d2w d1w'\ dw . . 

(3) 

(4) 

where k: and kj are the elastic rotational stiffness constants o f the plate's edge. 
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2.2. THE MODIFIED BOLOTIN METHOD ( M B M ) 

In the M B M an eigen mode is initially approximated by a general solution consisting o f trigonometric 
functions (in the interior region) 

where p and q are real numbers which are to be determined. From Equations (5) and (1) the formula 
for the eigen frequency derived by the M B M is given by 

ph ph 
(6) 

The solution o f the first auxiliary problem satisfying the boundary conditions according to Equations 
(3) and (4) can be expressed as 

X{x) = Axcosh 
Pnx 

ab 
+ A-,sinh 

ab 
+ AyCOS 

pnx 
+ /L,sin 

pnx 
(<) 

where 

2q2b2B , _2lJ G.a2b2 

D 
• + p1b2+^-

n'D. 
(8) 

Substituting of Equation (7) into the boundary conditions according to Equations (3) and (4), the 
existence o f a nontrivial solution yields the first characteristic determinant. 

The solution o f the second auxiliary problem satisfying the boundary conditions according to Equation 
(2) can be expressed as 

rqny 
Y(y) = BlSm (9) 

2.3. D Y N A M I C RESPONSES OF THE PLATE 

The dynamic response of the plate is determined by using the method of variation o f parameters, 
which can be written in the following form: 

w(x,y,t) = 

pnx 

cosh 
pnx 

ab 

pnx 

b[clk,p-Clklp + a{Fx + Fl)si'\ 

-bpS,+sxp 

sinh 
pnx 

. ab 

pnx 

a 

(10) 
qny 

L„(t) 

where T™ (t) is a function o f time, which must be determined through further analysis. 

The general solution for the forced response deflection o f the plate to an arbitrary dynamic load 
p(x,y,t) is given in integral form by using Duhamel's integral method as follows: 
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m=\l 
Xm{x)Yn{y)e - r < w 

m=ln=l 
P^r))xm{x)dx\Yn{y)dy 
PhQn 

, - /w m „( ' - r ) 

t + bmn sin 

sinJl-y2a>nw(t-T) 
01) 

dv 

3. RESULTS A N D DISCUSSION 

An orthotropic rectangular plate supported by an elastic Pasternak foundation subjected to a dynamic 
load is considered. The data for the plate and load amplitude for the numerical example treated in this 
paper are: a=7.5 m, 6=15 m, /r=0.5 m, £ , = 3 0 x l 0 9 N / m \v=20xl09 N /m 2 , y»=0.15, t y O . l , p=2Ax\$ 
kg/m 3 , GP=10>0 N /m 2 and Po=6.0xl0 5 N. The boundary conditions are transversely supported edges 
with non uniform elastic rotational restraint along the shorter edges (x=0, 7.5 m) and simply supported 
along the longitudinal edges (y=0, 15 m). In the following discussion, x0 andy0 refer to the moving 
load position, Ax refers to the distance of the suddenly moving load, t0 refers to the time at which the 
load is moving to the new position, tt refers to the time at which the load starts to move with a 
constant velocity v. In this numerical example, the elastic foundation stiffness is set to be £,,=6.25x10 6 

N/m 3 .The load moves along the centerline (y 0=7.5m) parallel to the x axis with constant amplitude. At 
time t=t0, the load suddenly moves to a new position at x=xt, and continues moving with a constant 
velocity v=280 km/hr. Figure 1 shows the dynamic response spectra as a function o f the load's 
frequency co and damping ratio y (0, 0.05 and 0.10). I t can be seen that the dynamic deflection wi l l 
increase significantly when the load's frequency approaches the first natural frequency of the 
orthotropic plate (cou=220.56 rad/sec). Finally, Figure 2 shows the various responses o f the 
orthotropic plate, where it is apparent that at low damping the load frequency does affect not only the 
maximum but also the distribution of the various responses. 
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Figure 1. Response spectra of the system as a function of the load's 
frequency for various values of damping ratio. 
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Figure 2. Various dynamic responses of the plate at near resonance condition (left) 
and away from resonance condition (right). 

4. CONCLUSIONS 

Based on the above study the following can be concluded: 
1) The use o f the Modified Bolotin Method (MBM) to approximate natural frequencies and mode 

shapes of rectangular orthotropic plates with any type o f edge restraints, leads to reasonably 
accurate mode shapes for the entire region o f the plate. 

2) The theory o f the rectangular damped orthotropic plate resting on a Pasternak foundation with any 
type of edge restraints subjected to moving dynamic loads, can reasonably be applied in the 
analysis of rigid runway pavements under the action of the moving wheel load o f an aircraft during 
landing. 

3) The results o f dynamic response analyses provide a better understanding o f the orthotropic plate 
behavior under the effect of the moving dynamic load, indicating possible resonance potentials as 
well. 

4) Through dynamic response analyses one may justify the appropriateness o f a selected combination 
of the orthotropic plate and foundation material properties, since it is the combined material effect, 
rather then the individual ones that determines the overall performance of the plate. 
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