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Abstract 

In this paper the dynamic response of rigid pavements to dynamic moving 
leads are investigated. To solve this complicated problem, the rigid pavement 
is modeled as an orthotopic rectangular plate supported by Pasternak 
foundation. For a simply supported plate, the wave numbers are equal to 
mu/a and niT/b, where 'a' and 'b' denote the length of the plate in the x and y 
direction respectively and m and n are positive integers, which determine the 
number of the mode. The mode shape is presented as a product of eigen 
functions and is further used in the dynamic response analysis. The dynamic 
loading function is described as a concentrated moving transverse load of 
harmonically varying amplitude, which travels with a constant speed. Such a 
loading may be considered to represent an aircraft wheel loading on a runway 
pavement upon landing of the aircraft. The general solution for this loading 
function is derived in integral form. This integral is then solved to determine 
the forced responses of the plate. It is the purpose of this paper to illustrate 
and demonstrate the applicability of this theory in practice by presenting 
numerical results of the analysis of the natural frequencies, dynamic response 
deflections, bending moments and shear forces of an example rigid runway 
pavement. 
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1. Introduction 
Several plate elements used in civil engineering, aerospace and marine structures are 

supported by elastic or viscoelastic media and subjected to transverse dynamic loads. The 
usual approach in formulating these problems is based on the inclusion of the foundation 
reaction into the corresponding differential equation of tne plate. The foundation is very often 
a complex medium, but since of interest here is the response of the plate, the problem 
reduces to finding a relatively simple mathematical expression, which could describe the 
response of the foundation at the contact area. 

A Pasternak foundation model assumes the existence of shear interaction between the 
spring elements. This may be accomplished by connecting the ends of the springs to a beam 
or plate consisting of incompressible vertical elements as shown in Fig. (1), which deforms 
only by transverse shear [1]. Some of the more recent studies dealing with the stiffness 
analysis of plates resting on an elastics foundation include work by Al-Mahaidi, R. et all [2], 
who determined the stiffness analysis of plates resting on a Kerr Foundation model. Later, 
Alisjahbana and Wangsadinata [3] presented a rather general dynamic response of a rigid 
pavement due to the traffic load rested on a Winkler type foundation, although the effects of 
the in-plane forces were not discussed. 

The purpose of this analysis is to present a general solution based on Fourier 
techniques for the free and forced response of a runway pavement supported by Pasternak 
foundation subjected to a landind airplane load p(x,y,t). The runway is modeled as an 
orthotropic plate supported by a Rastemak foundation. 

2. General Analysis 
The sides of the rectangular damped orthotropic plate, a and b, are parallel to the x and 

y axes respectively as shown in Figure 1. The plate is subjected to a general moving 
transverse dynamic load p(x,y,t) and rests on a Pasternak foundation with a foundation 
modulus k, and the shear foundation modulus G s . Expressing the plate deflection as w(x,y,t), 
the general differential equation of the deflected surface is as follows: 
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D y are flexural rigidities in x and y directions respectively and B is the effective 
dx 

where D 
torsional rigidity; y is the damping ratio and p is the mass density. 
The solution of the homogeneous orthotropic plate equation can be determined by the 
method of separation of variables. By substituting separation variables that satisfy the 
boundary conditions according to: 
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into the homogeneous equation of motion according to Ean. (1), one obtains: 
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Since Wm^x.y) depends only on the spatial variables and T ^ t ) depends on the temporal 
variables, each side of Eqn. (3) must be equal to a constant. These separation constant 
values, or eigenvalues, will be denoted as f}4™ that can be expressed as follows: 
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Furthermore, the natural frequencies of the plate, which are related to the separation 
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constants p 4 m n are given by: 

2 _ Pmn (5) 

Thus, the solution of the homogeneous equation can be expressed as 
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where A m n and B m n are coefficient constants that can be determined through the initial 

conditions, cod = co m n ^( l - y 2 ) is the damped frequency of the system. 

3. Forced Response 
Since a fundamental set of solutions of the homogeneous partial differential equation is 

known and given by the eigenfunctions, it is appropriate to use the method of variation of 
parameters as a general method of determining a particular solution of the corresponding 
non-homogeneous partial differential equation of motion. : 

Using the characteristic function from Eqn.(2), an appropriate solution for the forced 
response may be written in the form: 
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where T m n (t) is a function of time and must be determined through further analysis. 
After substituting Eqn.(7) into the governing non-homogeneous partial differential equation of 
motion, Eqn.(1) can be put in the following form: 
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+ 7 n £ r ^ l t ) W m n ( X | y ) + p h ^ T T ( t ) W m n ( x , y ) = p(x,y,t) 
at dt 

The differential equation for the coefficient functions T m n (t) may be obtained by multiplying 

both sides of Eqn.(8) in turn by either sin mrtx 
or sin 

nrcy and integrating over the plate 

region 0<x<a;0<y<b. Thus an ordinary differential equation for T m n ( t ) is obtained in the 
following form: 

t . . . 4- 2 -r IA.\ • mux . f . mux . T m n ( t ) + 2yco m nT m n( t) hcoLT m n ( t )= f s m — d x j s m — d y P(x.y.t) 
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where y = 
2pcon 

is a damping factor ratio and Q m n is a normalization factor. 

Note that the homogeneous solution of Eqn.(9) is identical with the one previously obtained 
using the separation of variables solution method. The total solution of Eqn.(9) for T ^ t ) is 
Tmn(t) = f m n ( t ) + r m n ( t ) (io) 
where f m n ( t ) is the homogeneous solution and T*m n(t) is the particular solution that can be 
represented in the form of a Duhamel convolution integral as follows 
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The homogeneous solution of the function T m n ( t ) contains the constants that must be 
determined from the initial conditions, which represents a transient state of vibration motion 
resulting from the initial conditions. The nature of the steady state forced responses of the 
plate is contained entirely in the functions T*mfr) defined by Eqn.(11). 

Substituting the expressions for the coefficient functions in Eqn.(11), the general 
deflection solution for the forced response of an orthotropic rectangular plate to an arbitrary 
transverse dynamic load p(x.y.t) is given in integral form by 
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The general solution presented above may be integrated to determine the response of 
the plate for an arbitrary applied transverse dynamic load p(x,y,t). 

A concentrated transverse load of harmonically varying amplitude moving in x direction 
of a plate in a straight line path at a constant y position with a constant speed v, which may 
be considered to represent an aircraft wheel loading upon ianding of the aircraft, can be 
expressed as foliows: 

p(x,y, t) = P0(1 + a cos a>t)6[x - vt]s[y - y 0 ] (13) 
where a is a coefficient which is equal to 0.5. 

Substituting the load function given in Eqn.(13) into Eqn.(12), resulting in the general 
response of the runway pavement subjected tar an aircraft wheel load upon ianding. 

4. Dynamic Response of the Plate \
Consider the case of the moving wheel load of an aircraft during landing with constant 

approaching speed v along the x direction. The load may be expressed as P0(1+0.5)cos»t. 
At t = to, in which to = a/v, the load leaves the plate. Thus, this problem may be treated in two 
parts. The first part involves a harmonically oscillating concentrated transverse load moving 
in x direction at a constant y 0 position. The socond part in which the load is no longer on the 
piate, involves a free vibration response of the system. The two parts of the problem are 
related through the boundary conditions. The motion of the plate at t = to due to the load at y 
= y 0 becomes the initial condition of the plate at the subsequent instantaneous loading 
change at t = to. 

Using the above principles, the motion during an interval cf time in which the ioad is no 
longer on the plate can be computed. Assuming the motion has achieved steady state prior 
to the load leaving the plate, the motion at t = to may be easily computed. This motion at t = 
to determines the initial condition for the second part of the problem. The response of the 
system can be easily computed by the following equation: 

w ^ y . t ) = Y l " W ™ ( x , y ) | e - ^ ^ 
m=1n=1 L «tf 

(14) 

in which W o ™ and v ^ in Eqn.(14) are the initial deflection and velocity at t = to. 
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Bending moments and the vertical shear forces in the plate can be computed in terms of the 
deflections obtained from Eqn.(14) from the following expressions: 

M« = - D 

x dx 
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ay 
M y = 

ax 2 

D, 
a z w „ a z w 

ax 2 ay 2 y ^ y ay 2 ax 2 

(15) 

where D x, D y, D x y and Gxy represent the flexural rigidities and the torsional rigidity for an 
orthotropic plate, B=DXf+2G and G is the elastic shear modulus of the plate. . 

4. Numerical Example 
Using the procedure described above, a runway pavement subjected to the moving 

dynamic wheel load of an aircraft during landing will be analyzed. The effect of changing the 
load's frequency co and the damping ratio y will be considered. The transverse dynamic load 
is Po = 2x10 s N, traveling with a constant approaching speed v = 260 km/hr. along the x 
direction representing the wheel loading of a DC 10 aircraft 30/40 series during landing. The 
following numerical results have been calculated for the following case: a = 7.5m, b = 15m, p 
= 2.4x103 kg/m 3, h = 0.5m, E x = 30x10 9N/m 2, E y = 20x10 9N/m 2, v x = 0.2, v y = 0 .1, G = 
10 1 0N/m 2 , k, = 7.5x107 N/m2/m, G s= 2.5x10 8N/m 2, y 0 = 7.5 m. 

Tabel 1. Natural frequencies of the runway plate for the first 5 modes (m=1,2,...,5 and 

n m=1 n m=2 n m=3 n m=4 n m=5 
COmn COmn COmn 

(rad/sec) (rad/sec) (rad/sec) (rad/sec) (rad/sec) 
1 346.115 1 601.178 1 1044.68 1 1673.45 1 2485.13 
2 401.956 2 656.445 2 1098.67 2 1726.52 2 2537.62 
3 494.798 3 748.598 3 1188.94 3 1815.28 3 2625.37 
4 624.513 4 877.668 4 1315.8 4 1940.1 4 2748.71 
5 731.06 5 1043.68 5 1479.51 5 2101.37 5 2908.05 

Table 1 shows the natural frequencies of the system for the first 5 modes (m=1,2,...,5 
and n=1,2,...,5). It can be seen from the table that the natural frequency increases as the 
mode number increases. Figure 2 shows the dynamic response spectra as a function of the 
load's frequency and damping ratio. It can be seen that the dynamic deflection will be 
maximum when the load's frequency approaches the value of the first natural frequency of 
the runway plate. 

Figure 3 shows the various responses of the runway plate to the moving transverse 
wheel loading of the aircraft. By comparing the case at near resonance condition and that 
away from resonance condition, one can recognize the significance of avoiding the 
resonance condition, since at resonance the various responses are apparently relatively very 
high. 
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JL 
Figure 1. A rectangular orthotropic plate resting on a Pasternak foundation subjected to a 

general moving transverse dynamic load. 
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Figure 2. Maximum dynamic deflection response spectra as a function of the load's 
frequency and damping ratio. h 
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Figure 3. Various dynamic responses of the plate away from resonance condition co=6 
rad/sec (left) and a/ lear resonance condition co=300 rad/sec (right). 

5. Conclusions 
In conclusion tne following can be stated: 

1. The theory of the orthotropic rectangular plate supported by a Pasternak 
foundation subjected to a moving transverse dynamic load based on Fourier 
techniques can reasonably be applied for the analysis of rigid pavements, such as 
runway pavements, subjected to aircraft wheel loading during landing of the 
aircraft. 

2. This dynamic response analysis gives a better understanding of plate behavior 
under the effect of the moving transverse dynamic loads, so that it becomes an 
additional design tool beside the conventional static design approach. 

3. This dynamic response design approach would give more freedom in the selection 
of pavement and foundation material properties, since it is the combined material 
effect, rather than the individual ones, that determines the overall performance of a 
rigid pavement that is shown from the result of the dynamic response analysis. 

4. For certain aircraft loadings, impact characteristics upon landing and approaching 
speeds, it is possible to construct response spectra design charts, which is the 
subject of further study of the authors. 
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