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Abstract. An investigation has been conducted to examine the dynamic behavior of 
orthotropic plates with different values of plate thickness and structural damping ratio 
to localized blast loads. The orthotropic plates are of 5.5 m and 4.5 m dimensions, 
with partially fixed boundary conditions along all edges. The aim of this work is to 
determine the dynamic response of orthotropic plates to localized blast loads, and to 
assess the significance of plate thickness and structural damping ratio on deflection 
of the plate. The numerical solutions of the natural frequencies are solved from two 
transcendental equations while the eigen functions of the system were solved by 
using the Modified Bolotin Method (MBM). Localized blast loading is further 
integrated by using the Duhamel integration to find the total dynamic response of the 
system. Special emphasis is focused on the maximum absolute dynamic deflections 
of the plate under localized blast load. The results obtained give an insight into the 
effect of the significance of the plate thickness and structural damping on the 
response of the orthotropic plate under localized blast loads and indicate that plate 
thickness and structural damping can affect their overall dynamic behavior.  

1 INTRODUCTION 

Due to different accidental and intentional events, the behaviour of an orthotropic floor plate as a part 
of structural components subjected to blast loading has been the subject of considerable research 
effort in recent years. 

To provide adequate protection against blast loading, the design and construction of hospitals, 
schools, office buildings have received renewed attention of structural engineers. 

Louca and Harding
1
, Kadit et al

2
 had presented analyses for plates subjected to blast loading, 

which included the effect of the stiffeners configurations to the plate’s response. Most of the 
researches were on simply supported orthotropic plates subjected to blast loading modelled as a 
triangular function, an exponential function and a stepped triangular function. Problems dealing with 
the response of orthotropic floor plates to blast loading with non simply supported condition were more 
complicated to be numerically solved. What is most relevant to the present work is the use of the 
Modified Bolotin Method (MBM) for solving the free vibration modes of rectangular plates (Pevzner et 
al

3
). 

Alisjahbana and Wangsadinata
4
 had extensively studied the dynamic response of orthotropic 
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floor plate with a general restraint condition along its support subjected to blast load with different 
stiffeners configuration. 

In the present research work the problem of an orthotropic stiffened floor plate under a localized 
blast load is further studied, whereby the plate is partially fixed along its support. The dynamic 
response of the orthotropic stiffened floor plate is computed for the different thickness value and 
different values of damping ratio. The vibration modes are solved using the Modified Bolotin Method 
and the mode shapes are expressed as a product of eigen functions. The mode numbers in the x and 
in the y directions are solved from the transcendental equations which satisfy the boundary conditions. 

The geometry and material properties of the plate are assumed to be linear elastic and orthotropic 
and of finite dimensions. Finally, results on dynamic responses such as midpoint deflection, bending 
moments and shear forces of the orthotropic plate are presented incorporating the effects of the plate 
thickness. 

2 GOVERNING EQUATIONS 

Using the classical theory of thin plates, the equation of equilibrium of an elastic orthotropic 

stiffened plate is as follows:  

 

    
      

    

4 4 4 2

x y4 2 2 4 2

w(x,y,t) w(x,y,t) w(x,y,t) w(x,y,t) w(x,y,t)
D 2B D h h p(x,y,t)

tx x y y t
    (1) 

 

where Dx and Dy are the flexural rigidity in x and y direction respectively, B is the torsional rigidity, is 

the damping ratio, is the mass density of the plate and p(x,y,t) is the blast load. The plate is stiffened 

by stiffeners parallel to x axes and the origin of the Cartesian coordinates (x,y) is set at the lower left 

corner of the plate, w(x,y,t) is the transverse deflection of the mid surface. The two considered types of 

support conditions for each plate edges are as follow:  

 

Along x=0 and x=a 

 

   
     

  

2 2

x y 12 2

w(x,y,t) w(x,y,t) w(x,y,t)
D k ; w(x,y,t) 0

xx y
                  (2) 

Along y=0 and y=b 

 

   
     

  

2 2

y x 22 2

w(x,y,t) w(x,y,t) w(x,y,t)
D k ; w(x,y,t) 0

yy x
                  (3) 

 

where k1 is an elastic rotational restraint constant along x=0 and x=a and k2 is an elastic rotational 

restraint along y=0 and y=b. A model of an orthotropic stiffened plate with rotational restraints along its 

edges subjected to a blast loading can then be established. 
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Figure 1. Rectangular orthotropic stiffened plate subjected to dynamic load p(x,y,t). 
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A localized blast load modeled as a triangular pulse function can be expressed by the following 
expression: 
 

         0 0p(x,y,t) P(t) [x x(t)] [y y(t)] P(t) [x x ] [y y ]                                                                   (4) 

 0

d

t
P(t) P (1 )

t
 for 0≤t≤td                                                                                                               (5) 

P(t) 0  for t>td                                                                                                                             (6) 

 

where P0 =the maximum amplitude of the load; td= time duration; x0= position of the localized blast 

load in x direction; y0= position of the localized load in y direction. 
 

3 NATURAL FREQUENCIES  

     The free vibration of the orthotropic stiffened floor plate with semi rigid condition along its support is 
studied first using the Levy’s solution. The free vibration of the system is set as: 
 

( , , ) ( , ) ( )sinw x y t W x y T t t              (7) 

  

where W(x,y) is a function of the position coordinates only, and  is the circular frequency. 
 
The undamped free vibration equation of motion of the system can be expressed as: 
 

  
   

   

4 4 4
2

4 2 2 4

( , ) ( , ) ( , )
2 ( , ) 0 x y

W x y W x y W x y
D B D h W x y

x x y y
         (8) 

 
The next step is to find the solution of Eq. (8) with the boundary conditions according to Eq. (2) and 
Eq. (3), to obtain the eigen frequencies and the mode shapes of the orthotropic floor plate. By 
postulating the following eigen frequency, which analogous to the case of a plate simply supported at 
all edges (Pevzner et al, 2000), natural frequencies of the system can be expressed as: 
 

        
          

         

4 2 44

2





mn x y

p pq q
D B D

h a ab b
           (9) 

 
where p and q are real numbers to be solved from a system of two transcendental equations, obtained 
from the solution of two auxiliary Levy’s type problem. 

4 DYNAMIC RESPONSE 

 The dynamic response of the stiffened orthotropic floor plate can be found by using the method of 
variation of parameters as a general method of determining a particular solution of the corresponding 
non-homogeneous partial differential equation, which can be written in the following form: 
 

 


1 1

( , , ) ( ) ( ) ( )
m n

mn m n mn

m n

w x y t X x Y y T t            (10) 

 
where Xm(x), Yn(y) are eigen functions, Tmn(t) is a function of time, which must be determined through 
further analyses. 
 
The differential equation for the function Tmn(t) can be expressed as: 
 

    
2

0 0

( , , )
( ) 2 ( ) ( ) ( ) ( ) 



a b

mn mn mn mn mn m n

mn

p x y t
T t T t T t X x dx Y y dy

hQ
        (11) 
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Qmn(x) is a normalization factor that can be expressed as: 
 

     
2 2

0 0

( ) ( )
a b

mn m nQ X x dx Y y dy             (12) 

 
The particular solution of the temporal function Tmn(t) can be represented in a form of the Duhamel 
convolution integral as follows: 
 

 

  
  
 

  
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( )

*

2
0 0 0

( , , ) ( , , )
( ) ( ) ( ) sin ( )

1

 
  

   

mn
t a b t

mn m n mn

mn mn
mn

p x y p x y t e
T t X x dx Y y dy t d

hQ hQ
      (13) 

 
The general solution for the forced response deflection of the orthotropic stiffened floor plate to a 
localized blast load p(x,y,t) is given in integral form as follows: 
 

   
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 
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2
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1
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  



  
  

mn
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m n m n

m n mn

t

mn

mn
mn

P x x y y
w x y t X x Y y X x dx Y y dy

hQ

p x y t e
t d

hQ

      (14) 

 
Once the response deflections of the orthotropic stiffened floor plate have been obtained, the internal 
forces of the floor (moment and shear forces) can be computed, using derivatives of those deflections. 

5 NUMERICAL RESULTS 

 A reinforced concrete rectangular damped plate stiffened by rectangular stiffeners parallel to the x 
axes is considered. The material is assumed to be orthotropic and linearly elastic. The data for the 

orthotropic floor plate and blast load are: a=5.5 m, b=4.75 m, Ec=2.57E
9
 N/m

2
, =2400 kg/m

3
, 

P0=1.3E
6
 N/m, td=1 ms, x0=1/3a, y0=1/3b. The absolute maximum dynamic deflection of the plate at 

mid plate due to a localized blast load will be calculated for =5% and =10% by using 5 modes in the 
x direction (m=1,2,...,5) and 5 modes in the y direction (n=1,2,...,5). Two transcendental equations will 
be used to obtain the values of p and q and the natural frequencies of the orthotropic plate for six 
different values of thickness for model 1 (1 stiffener) and model 2 (2 stiffeners) will be obtained. The 
natural frequencies of the plate are shown in Table 1. 
 

 
 

Figure 2.The maximum dynamic deflection at the mid-point of the orthotropic floor plate subjected to a 
localized blast load for different value of thickness. 
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m n t=0.10m t=0.12m t=0.14m t=0.16m t=0.18m t=0. 20m 
  mn (rad/s) mn 

(rad/s) 
mn 

(rad/s) 
mn 

(rad/s) 
mn (rad/s) mn (rad/s) 

1 1 148.251 169.867 192.269 215.374 235.545 263.172 
 2 348.911 404.346 462.745 522.938 580.903 646.777 
 3 636.952 747.495 861.909 978.662 1093.47 1217.27 
 4 1016.69 1201.7 1391.31 1583.72 1773.87 1975.9 
 5 1488.97 1767.93 2051.76 2338.93 2622.91 2923.87 
2 1 319.177 338.605 367.304 398.86 428.117 467.795 
 2 520.01 572.575 633.545 699.947 762.674 842.914 
 3 818.376 920.951 1035.39 1157.14 1275.48 1414.38 
 4 1206.25 1380.06 1568.17 1764.96 1958.54 2175.76 
 5 1684.86 1950.18 2231.56 2522.76 2810.4 3126.48 
3 1 610.632 646.899 691.595 742.21 793.79 855.227 
 2 813.649 871.813 944.083 1025.84 1105.92 1207.6 
 3 1119.21 1228.99 1341.11 1475.27 1606.84 1768.3 
 4 1516.87 1682.41 1873.53 2080.74 2285.28 2525.88 
 5 2004.6 2256.46 2538.24 2838.57 3136.06 3475.96 
4 1 1031.16 1086.78 1156.67 1236.47 1320.9 1415.69 
 2 1230.45 1303.72 1397.51 1505.32 1615.31 1748.27 
 3 1539.61 1648.65 1786.19 1942.72 2099.83 2292.32 
 4 1945.35 2111.82 2314.41 2540.78 2767.09 3039.25 
 5 2443.59 2688.66 2977.65 3294.66 3611.26 3983.31 
5 1 1573.56 1655.4 1758.84 1877.23 2004.34 2143.49 
 2 1769.71 1866.4 1991.3 2135.5 2286.55 2461.82 
 3 2080.24 2207.34 2371.69 2561.26 2756.06 2989.61 
 4 2492.76 2669.62 2893.88 3149.67 3409.91 3722.64 
 5 2999.89 3247.94 3553.47 3896.59 4243.37 4656.46 

Table 1: The fundamental frequencies of the orthotropic floor plate (model 1) for the first 5 modes in 
the x direction (m=1,2,...,5) and for the first 5 modes in the y direction (n=1,2,...,5). 

 
Table 1 shows the natural frequencies of the orthotropic floor plate for different floor thickness. It is 
shown that by increasing the plate thickness, the natural frequencies of the system increased. 
 
 

 
 

Figure 3. Maximum absolute value of Mx along the x axes as the function of the thickness. 
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5.2. Effect of damping ratio 

For model 1 (t=0.16 m) with the value of =5 % the absolute dynamic deflection of the system at 
the mid-point subjected to a localized blast load is 0.374755 m. By increasing the value of damping 
ratio with the factor 2 has resulted in a decrease in the mid-point absolute dynamic deflection by 8.9%. 
Increasing the value of damping ratio of the floor has also resulted in a decrease of the distribution of 
the internal moment in the x direction (Mx) along the x axes for all values of thickness considered in 
this study, as shown in Figure 3 and Figure 4. Therefore, the damping ratio of the floor system plays 
an important role in determining the level of response of the orthotropic floor. 
 

5.3. Effect of stiffeners configuration 
 

The absolute maximum dynamic deflection of the floor plate has been computed for 2 different 
stiffeners configuration as shown at Table 2. The existence of the stiffeners in the system decreases 
the mid-point displacement significantly; the mid-point displacement for model 1 (1 stiffener) for t=0.16 

m, =5% is 0.0783806 m, while the mid-point displacement for model 2 (2 stiffeners) for t=0.16 m, 

=5% is 0.0647376 m. Therefore the existence of the stiffeners in the system reduces the mid-point 
deflection of the system by 17.4%. 
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Figure 4. Dynamic deflection time history at the mid-point and moment-x (Mx) distribution along x axes 

for model 1 subjected to a localized blast load. 
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t w max (m) w max (m) w max (m) 

(m) =5%, model 1 =10%, model 1 =5%, model 2 

0.16 0.0783806 0.0713922 0.0647376 

0.18 0.0527863 0.0485378 0.0437584 

0.2 0.0358481 0.0328331 0.0305427 
 

Table 2: The maximum dynamic deflection of a damped orthotropic floor plate subjected to a localized 
blast load as a function of thickness for model 1 (1 stiffener) and model 2 (2 stiffeners).  

 
 

  
Qx distribution Qy distribution 

Figure 5. Qx and Qy distribution along x axes and y axes for model 1 subjected to a localized blast 

load, =10%, td=2 ms. 
 

  

Mx distribution My distribution 

Figure 6. Mx and My distribution along x axes and y axes for model 1 subjected to a localized blast 

load, =10%, td=2 ms. 

6 CONCLUSIONS 

 From the dynamic analyses of the orthotropic damped floor plate subjected to a localized blast load 

the following conclusions can be drawn: 

1. The effect of the thickness can be very important, since it affects drastically the overall 

behaviour of the orthotropic floor plate. 

2. The inclusion of damping in calculating the dynamic response of the system will result in much 

stiffer responses, especially for model 2 with 2 stiffeners. 

3. The effect of stiffeners configuration is not as dominant in reducing the overall behaviour of 

orthotropic floor plate as increasing the thickness of the floor. 
While this paper deals mainly with computational results, Kim and Nurick

5
 reported on the 

experimental result on the significance of the thickness of a plate when subjected to localized blast 
loads. Both approaches provide satisfactory correlation and create better understanding of the 
localized blast load and the significance of the plate thickness. 
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