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An investigation has been carried out to examine the dynamic behavior of concrete 
plates subjected to localized blast loading.  The concrete plate is modeled as a thin 
plate with finite dimensions sitting on an elastic three-parameter soil foundation model.  
The localized blast loading is expressed by using the Dirac Delta function for different 
value of the load’s position.  The governing equation of the problem is solved using the 
modified Bolotin method for determining the natural frequencies and the wave 
numbers of the system.  The orthogonal properties of Eigen functions are used to find 
the general solution of the problem.  Special emphasis is focused on the mid-point 
displacements.  The results obtained allow an insight into the effect of the load’s 
position, the thickness of the concrete plate on the response of the concrete plate under 
localized blast loading and indicate that the load’s position and the thickness of the 
plate can affect their overall behavior. 

Keywords: Dynamic behavior, Localized blast load, Dirac delta function, Three-
parameter soil foundation, Natural frequencies, Eigen function. 

 

  

1 INTRODUCTION 

In recent years, public buildings and structures have unexpectedly been exposed to the risk of 

terrorist attacks, particularly in the form of vehicle bombing or other portable detonation devices.  

These potential threats give rise to a challenging question of structural safety, provided that any 

structural part could be subjected to unpredictable loading that were not primarily designed 

against, in terms of both the loading type and intensity.   

   The dynamic analysis of orthotropic plates with fully fixed supported boundary conditions 

under localized blast loading was presented by Alisjahbana and Wangsadinata in 2014.  Effects of 

various parameters such as the position of the blast loading, plate thickness and damping ratio on 

the maximum dynamic deflection of the plates subjected to localized blast loading were 

considered (Alisjahbana and Wangsadinata 2014).   In most models used previously, the dynamic 

response of concrete plate is taken into account only by the inertia of the plate (Lu 2001).  

Concerning the soil, inertia is neglected in dynamic modeling of pavement structure.  To extend 

the previous work, the present study investigates dynamic response of concrete pavement resting 

on Pasternak foundation under localized blast loading.  The concrete pavement is modelled as a 

thin orthotropic plate with semi rigid boundary condition in its edges.  In order to take into 

account its inertia, the soil is modelled as a three-parameter type (Gibigaye et al. 2016).   
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2 GOVERNING EQUATION 

In this research work, a rectangular orthotropic concrete plate of thickness h sits on an elastic 

three-parameter soil foundation model as shown in Fig. 1 is considered.  According to the classic 

theory of thin plates and taking into account the reduced mass of soil, the transverse deflection of 

the Kirchhoff plate satisfies the following differential equation (Gibigaye et al. 2016): 
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where w(x,y,t) is the deflection of the plate which is equal to the deflection of the plate-soil 

interface, Dx is the flexural rigidity of plate in the x-direction, B is the torsional rigidity of the 

plate, Dy is the flexural rigidity in the y-direction, Gs is the shear modulus of the foundation,  

is the logarithmic decrement of the soil,  is the mass density of the plate, m0 is the inertial 

factor of the foundation soil. 

 

3 IDEALISATION OF BLAST LOADING 

Determination of the exact localized blast loadings is almost unrealistic considering the 

complicated process of the interaction of the blast wave with the target in concern (Li et al. 

2009).  In order to reduce this complex problem of blast loadings to reasonable terms, 

Alisjahbana and Wangsadinata have suggested a simplified blast loading function as a stepped 

triangular function as shown in Fig. 2 (Alisjahbana and Wangsadinata 2011): 
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where P0 and P2 are the maximum amplitude of the blast loading, td1, td2 and td3 are duration 

of the blast loading. 

 

 
 

Figure 1.  An elastic rectangular concrete plate resting on an elastic three-parameter soil foundation. 
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Figure 2.  Model of a stepped triangular blast loading. 

 

4 DETERMINATION OF THE EIGEN FREQUENCIES  

In order to solve the governing equation (1) of the problem, the free vibrations solution of the 

problem is set as: 
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mn is the circular frequency of plate and Wmn(x,y) is the function of position coordinates 

determined for the mode numbers m and n in x-direction and y-direction, respectively, which can 

be determined from the first and second auxiliary Levy-type problem (Alisjahbana and 

Wangsadinata 2014). 

 

4.1    First Auxiliary Levy-type Problem 

Based on the Modified Bolotin Method the solution of Eq.  (1) for the first auxiliary problem can 

be expressed as (Alisjahbana and Wangsadinata, 2011) 
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Satisfying the semi rigid boundary conditions along x=0 and x=a: 
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Substituting Eq.  (4) into the homogeneous form of Eq.  (1) results in the Eigen mode of the plate 

in the x-direction Xmn(x): 
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where: 
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4.2    Second Auxiliary Levy-type Problem 

The solution of Eq.  (1) for second auxiliary problem that satisfies the boundary conditions of 
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can be expressed as 
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Substituting Eq.  (8) into the homogeneous form of Eq.  (1) results in the Eigen mode of the plate 

in the y-direction Ymn(y): 
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The unknown quantities p and q are calculated from the transcendental equation as: 
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Once the value of p and q are determined from Eqs.  (10a)-(10b), the Eigen modes of the 

system are determined as the product of Eq.  (6) and Eq.  (7).  The natural frequency of the 

system can be expressed as: 
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4.3    Determination of the Time Function 

The time function that satisfies Eq.  (1) can be expressed as: 
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where  .  is the Dirac Delta function and Qmn is the normalization factor of the Eigen modes that 

can be expressed as: 
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5 NUMERICAL APPLICATIONS, RESULTS AND DISCUSSION 

Using the procedure described above, an orthotropic concrete plate on the inertial type of soil 

subjected to a localized blast loading is analyzed.  In this paper, a finite rectangular concrete plate 

is considered.  The structural properties of the plate are the size (4 m x 3 m); the thickness of 0.12 

m, the physical characteristics of the plate are = 2400 kg.m-3; x= 0.2; y; = 0.3; k1=8.5.107 

Nm/rad/m; k2= 4.75.107 Nm/rad/m; Ex= 27.8.109 Pa; Ey= 30.109 Pa; m0= 1261.63 kg.m-3.  The 

stepped triangular blast loading magnitude are P0= 12.104 N; P2= 3.104 N; td1= 2.293.10-3 s; 

td2=40.10-3 s; td3= 3.10-3 s.   

 

5.1    Variation of Deflection as a Function of Blast Loading Position 

Figure 3 shows the variation of dynamic deflection as a function of blast loading position for soft 

soil condition (Hs= 5 m).  The maximum dynamic deflection at the mid-span occurred when the 

position of the blast loading occurred at (a/8, b/2) and 10 tdt  .  This result indicates that the 

maximum dynamic deflection is influenced by the position of the blast load and the duration of 

the blast load. 
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Figure 3.   Dynamic deflection time history of concrete plate for different blast load’s position. 
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Figure 4.   Dynamic deflection time history of concrete plate as the function of inertial soil (m0). 

 

5.2    Effect of Inertial Soil Factor on Dynamic Deflection 

Figure 4 shows the variations of the deflection at the center of the mid-span of the plate for 2 

types of foundation models.  It can be seen that by including the inertial soil factor (m0) into the 

equation of motion, the maximum dynamic deflection can be reduced by 14.6% compared with 

the maximum dynamic deflection of the plate on Pasternak foundation model. 

 

6 CONCLUSION 

In this paper the dynamic behavior of the orthotropic plate with semi rigid boundary condition 

subjected to stepped triangular blast loading was studied.  The position of the blast loading, the 

duration of the blast load and the effect of inertial soil factor, which may affect the dynamic 

response of the plates subjected to blast loading was considered.  The position of the blast loading 

is found to influence the development of maximum response.  The three type parameters of 

foundation model will significantly reduce the maximum dynamic deflection. 
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