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Abstract. The study of rigid roadway pavement under dynamic fraffic loads with variable velocity is
investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate
supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dovjls and tie
bars which provide elastic vertical support and rotational restraint. The natural frequencidf of the system
and the mode shapes are solved using two transcendental equations, obtained from the solution of two
auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load
is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate
with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality
properties of eigenfurf@ions. Numerical example results show that the velocity and the angular frequency
of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown
that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular
plate becomes infinite in amplitude.

Keywords: rigid roadway pavement; elastic foundation; auxiliary Levy’s type problems; modified bolotin
method; dynamic moving traffic load; critical speed.

1. Introduction

Several plate elements used in civil engineering, aerospace and marine structures are supported by
elastic or viscoelastic media and subjected to transverse dynamic loads. The usual approach in
formulating these problems is based on the inclusion of the foundation reaction into the
corresponding differential eqgation of the plate. The foundation is very often a complex medign,
but since of interest here is the dynamic response of the rigid roadway pavement subjected to!:le
dynamic loads, the problem reduces to finding a relatively simple mathematical expression, which
could describe the response of the foundation at the contact area.

Static and free vibration analyses of plates on an elastic foundation have received considerable
attention in the literature by researchers (Saha 1997, Matsunaga 2000). Models, such as beams or
plates on elastic and viscoelastic foundations under moving loads are widely adopted (Gbadeyan
and Oni 1992, Kim and Roesset 1998). Sun (2006) investigated an infinite plate resting on an
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elastic Winkler foundation subjected to a moving concentrated and line load of constant amplitude
and speed using a Triple Fourier Transform (TFT). Kang and Zhang (2007) studied the dynamic
response of rigid roadway pavement under vechicle load by using a special function. The vechicle
loads are considered as impact loads and the dynamic response of rigid pavement was analyzed by
mathematical method and mechanical method according to the initial condition and boundary
condition. Similarly, the dynamic response of rigid pavement sitting on elastics foundation subjected
to moving loads has been studied extensively (Alisjahbana and Wangsadinata 2007, 2008, Cao ef al.
2008mGong 2008, Beskou and Theodorakopoulos 2011).

In this paper, the dynamic responses of rigid roadway pavements sub'.cted to dynamic traffic
loads with variable velocity are discussed. The rigid roadway pavement is modeled as a rectangular
damped orthotropic plate resting on a Pasternak foundation. The Pasternak foundation is a more
advanced model than the Winkler foundation. The boundary supports of the plate are the steel
dowels and tie bars which provide elastic vertical support and rotational restraint. For this boundary
supports of the plate, the wave numbers are presented in the form ps/a and g/b, where p and g are

al numbers to be solved from a system of two transcendental equations, obtained from the
solution of two auxiliary Levy’s type problems, giso known as the Modified Bolotin Method
(Pevzner 2000). In the application of the theory of dynamic response of the orthotropic plate, the
continuous elastic foundation modeled as a Pasternak foundation is representing closely the actual
subsoil condition, but requiring advanced analytical treatment in solving the dynamic response
problem. A Pasternak foundation model incorporates shear interaction between spring elements,
mobilized through a plate placed on top of the springs, which deforms only by transverse slggar.
Thus, in this model compressive and shear deformation of the soil are duly simulated. The
homogeneous solution of the problem is obtained by a method of separation of variables, in such a
way that superposition yields a solution satisfying the boundary conditions. As the mode shapes are
expressed as products of eigenfunctions, the solution of the dynamic problem is obtained on the
basis of orthogonality properties of eigenfunctions. The general solution of the response of the plate
to the dynamic moving load in integral form is obtained from the specific properties of the Dirac-
delta function, so that it can be further integrated to obtain the various plate response equations
during the time interval the load is moving within the plate boundaries, as well as after the load has
left the plate.

2. The governing equations
In this research work, an orthotropic homogeneous elastic rectangular plate resting on an elastic

Pasternak foundation is considered. According to the classic theory of thin plates, the transverse
deflection w (x, v, f) of the plate satisfies the partial differential equation
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in which w (x, ), ) is the transverse deflection; p is the plate mass density per unit volume; /% is
plate thickness; ¢ is the time; y is the damping ratio; Ay is the spring stiffness and G; is the shear
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Fig. 1 A rectangular rigid concrete plate resting on a Pasternak foundation under dynamic traffic loading

modulus of the Pasternak foundation'p (x,» 1) is the dynamic load on the plate; D,, D, are
respectively the plate flexural rigidities in the x and y direction, B is the effective torsional rigidity.

The dynamic moving traffic load p (x,y,f) modeled as an equivalent concentrated load of
harmonically varying magnitude moving in the direction of the x axis of the plate as shown in Fig.
1 can be expressed as follows

8 8
p(xy,8) = plx(D), ¥(1). 1] = P()d[x—x(D]oly—y(H] = Po[l +%cos wf)é‘[x—X(f)]éTy (1)}

@
x(1) = vot + 2ace();  p() = 3b 3)

Due to the use of dowels and tie bars to join the concrete pavement plates, all four sides of the
plate have elastic vertical translational support as well as elastic rotational restraint along the sides.
Thus, the boundary conditions for each side of the plate are as follows

Elastic vertical support along x =0

e @
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3. General analysis
In order to solve the problem described above, it is assumed that the principal elastic agps of the
material are parallel to the plate edﬁs and the free vibration solution of the problem is set as
(x, 3, 1) = W(x,y)sin(wr) (8)

where  is the circular frequency and W (x, y) is a function of the position coordinates only. Then
substituting Eq. (3) into the undamped free vibration form of Eq. (1) yields

~d 4 4 . 2 2
b2 "f+ 2B “1”’1 + ij ’f—phm“W+ kW — G_‘_[i—‘fﬁ ‘; W} =0 (9)
ox ox dy- Oy X" "

The next step is to find the solution of Eq. (9) with the boundary conditions according to Eq. (4),
Eq. (5), Eq. (6) and Eq. (7), to obtain the eigen frequencies and the mode shapes of the orthotropic
plate with mixed support conditions at its edges. By postulating the following eigen frequency,
which is analogous to the case of a plate simply supported at all edges (Alisjahbana and
Wangsadinata 2007), natural frequencies of the system can be expressed as

4

= (B[ E 2 0] 52 ()] w

where p and g art.real numbers to be solved from a system of two transcendental equations,
obtained from the solution of two auxiliary Levy’s type problems, also known as the Modified
Boloti.Method (Pev’er 2000).

The solution of the first a';iliary problem satisfying the boundary conditions according to Eq. (4),
Eq. (5), Eq. (6) and Eq. (7) can be expressed as

XG) = Alcosh[%x}+Azsinh[%]+/13cos[%x]+A45in[%ﬂ (1)

where
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Substituting of Eq. (11) into the boundary conditions according to Eq. (4), Eq. (5), Eq. (6) and Eq.
(9), the existence of a nontrivial solution yields the first characteristic determinant. The solution of
the second auxiliary problem satisfying the boundary conditions according to Eq. (4), Eq. (5), Eq.
(6) and Eq. (7) can be expressed as

Y(y) = B, cosh[gﬂ} " Bgsinh[@l’] B, cos[ﬂl”] + B,sin [S’—”X] (13)
ab ab b b
where
9 = 22‘a"B+ qgaz i G'f.' b (14)
D}' J‘T_D}.

4. Dynamic response of the plate

The dynamic response of the plate can be found by using the method of variation of parameters
as a general method of determining a particular solution of the corresponding non-homogeneous
partial differential equation, which can be written in the following form

m=wR=w

‘FPHHF{x'-‘ y" i‘) = Z Z X!H'H (x} },HHI (y) Tmrr('f) (15)

m=1n=1

where X, (x), ¥,.(v) are eigenfunctions, 7,,(f) is a function of time which must be determined
.Jrough further analysis. Having obtained the natural frequency @, from Eq. (10) involving the
spring stiffness and she@ modulus of the Pasternak foundation, the differential equation for the
coefficient functions 7,,(7) can be expressed as

2
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where O,,, 1s a normalization factor that can be expressed by

akb
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The particular solution of the temporal function T,,,(f) can be represented in a form of the
Duhamel convolution integral as follows (Alisjahbana and Wangsadinata 2007, Michaltsos and

Raftoyiannis 2009)

1 a b (1 = T)
T:w(") = M Xnm(x}dx Ynm(y)dy} |:e— sin ( @D,y N ( I— {;2)(! = T)) dr (18)
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The general solution for the forced response deflection of the plate to an arbitrary dynamic
moving load p (x, y, #) is given in integral form as follows
For 0 =1 <ty

[
w(x,y,1) = z S X0 Y0 " [0,,08(u 1 = E1) + by, 5i0( 0,01 - £1))
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in which wy,,, and v,,, are the initial deflection and velocity at 7 = f,. Bending moments and vertical
shear forces in the plate can be computed in terms of the deflection and its derivatives obtained
from Eq. (20) and Eq. (21) as expressed by the following equations
Bending moments
M= _D.‘_(a'w(x,qy, 1) . w(x,y,a‘)j i = _Dr(ﬁ'w(x,qy,r}_’_ vra"w(x.’y, !))
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Shear forces
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5. Numerical example

Using the procedure described above, a roadway pavement subjected to a moving dynamic traffic
load will be analyzed. The effect of changing the load’s angular frequency @ and the damping ratio
¢ will be investigated. The average wheel load is P,= 80 kN, traveling with a velocity of v=190
km/hr and an acceleration of acc =2 nggsec® along the x axis. The following numerical results have
been calculated for the following case: @ =5.0m, b=3.5m, h=0.25 m, E,=27 GPa, E, =22.5 GPa,

=0.18, v,=0.15, p=2,500kg/m?, k=27.2 MN/m?, G,=9.52 MN/m, ks, ks, kaﬂ, ksy» =200
Mmef’m kryy, kray, kry,, krs,=1.0 m/rad/m. Table 1 shows the critical velocities of the system for
three values of occurrence of the maximum absolute dynamic deflection, as also shown in Fig. 2.
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Table 1 The critical velocities of the system for three values of occurrence of the maximum absolute dynamic

deflection
¥ (%) Critical speed (km/hr) Absolute dynamic deflection (m)
0 140 0.000430195
5 150 0.000203425
10 140 0.000177843
Critical speed for soft zoil condition
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Fig. 2 Maximum dynamic deflection response spectra as a function of velocity for various values of damping
ratio for Py =80 kN, @y, = 100 rad/sec, ace =2 m/sec’
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Fig. 3 Maximum dynamic deflection response spectra as a function of load’s frequency for various values of
damping ratio for soft soil condition

Fig. 3 shows the maximum dynamic deflection response spectra as a function of load’s frequency
for various values of damping ratio for soft soil condition. Fig. 4 shows various dynamics responses
of the rigid runway pavement for different values of damping ratio. It can be seen that the damping
ratio play a very important role in reducing the maximum dynamic deflection. Fig. 5 shows the
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Fig. 4 Various dynamic responses of the rigid runway pavement for different values of damping ratio for soft
soil condition, time interval 0 <1 <4,

dynamic deflection distribution over the plate region due to the moving dynamic traffic load during
the interval 0 <7 <, It can be seen that along the edges of the plate, the distribution of the moment
in the x direction is not zero due to the existence of dowels and tie bars.

6. Conclusions

In this research work, dynamic response of rigid roadway pavement subjected to dynamic traftic
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n=] n=2 n=3

m=
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Fig. 5 The dynamic deflection distribution over the plate region to the moving dynamic traffic load calculated
at x=al2 and y=h/2 during the interval 0 <7<1#, Py=80kN, v=90 km/hr, acc =2 m/sec’, @ipay=
100 rad/sec, ¢ =0.0996 sec, {= 5%

loads with variable velocity are investigated. Analytical form of solution of the dynamic
displacement has been obtained on the basis of the orthogonality properties of eigen functions. The
whole formulation in this research is based on the assumption that the boundary supports of the
orthotropic rectangular plate are steel dowels and tie bars which provide elastic vertical support and
rotational restraint. This is a very realistic assumption, particularly for rigid roadway pavement
joints, where one may find out the rotational and the vertical shear deformation exist along the
joints.

The natural frequencies of the system and the mode numbers (m=1, 2, ..., 7and n=1, 2, ...,7)
are solved using two transcendental equations to account for the effect of the non-simply supported
boundary conditions.

The effect of the reasonable moving traffic load determines significantly the dynamic response of
the plate, leading to the necessity to limit the aspect. Due to the existence of damping the dynamic
deflection is not symmetric with respect to the angular frequency of the load (Fig. 3). At the fixed
acceleration, the dynamic deflection decreases with increasing velocity of the load for all values of
damping ratio considered in this research (= 0%, 5% and 10%).

The present work only presents the mathematical solution which should be verified further with
the results of experimental research, especially on the determination of the forces in the steel
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connecting devices (dowels and tie bars) along the joints.
The method presented in this paper can be applied to plates, subjected to multilane and sequential
loads passing over the plate by the principle of superposition.
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