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Abstract 

Berth, quay crane and yard are the main resources of the port that determine the level 

of service quality provided to shipping lines. In this paper, berth, quay crane and yard 

allocations are considered simultaneously. Scenarios are made to determine the effect 

of these factors. The scenario is based on the combination of each level of each factor. 

Each scenario is simulated to measure the response assessed based on turnaround time. 

The authors develop a simulation model to investigate the impact of berth, crane, and 

yard allocation simultaneously. Simulation model was developed to see the impact of 

simultaneous allocation and collaborative strategy, especially the impact on waiting 

and turnaround time. The authors develop 16 scenarios from a combination of berth, 

quay crane, yard and strategy. Author uses two terminals in Jakarta, Indonesia, is the 

Koja container terminal (TPK Koja) and Jakarta International Container Terminal 

(JICT). The results show that simultaneous-collaborative allocation can reduce waiting 

and ship turnaround time. Simultaneous-collaborative strategy reduces waiting time 

and turnaround time significantly, improving service level to shipping lines.  

Keywords: berth allocation problem, uncertain, collaboration. 
 

 

1. Introduction 

Container terminals play a vital role in serving as key nodes in the global 

container transportation network where intermodal and intra-modal container 

movements are conducted extensively (Jin, Lee, & Hua, 2015). Container terminal is a 

complex system involving multiple functional areas and operations. The operations in 

a container terminal can be classified into the three areas: seaside, yard and landside 

(Bierwirth & Meisel, 2010)The quay-side area is directly open to container vessels and 

is equipped with quay cranes for container loading onto and discharging from vessels, 



while the yard-side area is mainly responsible for container temporary storage where 

yard cranes and trucks are employed for container stacking and horizontal movement. 

Various operations, arising at the quay-side area (e.g., berth allocation and quay crane 

scheduling) and yard-side area (e.g., storage allocation, yard crane scheduling, yard 

truck scheduling), need to be well organized in order to guarantee the efficiency and 

competitiveness of the container terminal.  

Indicator of port performance one of which is determined based on the length of 

the ship is in the port (ship turnaround time). Ship turnaround time is influenced by 

dock allocation, quay crane allocation, and container yard allocation. These factors 

influence each other, so that the discussion of berth allocation cannot stand alone and 

involves all three of these factors.  

The ship takes time to complete loading and unloading activities. The time is 

affected by the number of quay cranes allocated to serve the vessel. Each crane has a 

different level of productivity. Quay cranes take time to perform one cycle of operation. 

Crane cycle time is the time required to reach the container on the ship, carrying and 

putting the container on the truck. Truck cycle time is the time it takes the truck to 

bring the container from the dock to the yard and back to the dock. Truck cycle times 

are not only determined by distance, but also truck speed and productivity of RTG 

cranes operating in container yards.  

Thus, crane cycle times and truck cycle times must be in sync. If the truck cycle 

time is greater than the quay crane cycle time, the quay crane must wait until the truck 

is available. Thus crane performance is not optimal, it affects the overall loading and 

unloading time. 

The allocation of quay cranes also not only takes into account the quantity, but 

also the position or location of the quay crane. In other words the allocation of quay 

cranes is determined by where quay crane positions are available and whichever one 

needs them. Imai 2008 explained that the allocation of QC cannot be done freely. Quay 

cranes must move on one rail, so the sequence is always fixed and cannot cross each 

other. As an illustration, the terminal has 3 berths and 8 quay cranes. Berth 1 and 2 are 

servicing vessels, where berth 1 is allocated 4 quay cranes, berth 2 is allocated 2 quay 

cranes. The loading-unloading time at dock 2 is longer than the dock 2. In the period t 

there are two vessel coming and should be serviced, while berth 2 is in operation, while 

berth 1 and 3 are available. Both vessel require 3 quay cranes each. Berth 1 available 

for 4 quay cranes, and at berth 3 available for 2 quay cranes. In that condition, the quay 

cranes located at terminal 1 cannot be allocated directly to berth 3. Allocation can be 

done by shifting one quay crane from berth 2 to berth 3, and shifting one quay crane 

from berth 1 to berth 2, and repositioning quay crane located on berth 2. This shift can 

be done only if allowed for interrupt in terminal 2, if no interrupt is not allowed, then 

the new shift can be implemented after operation in berth 2 is completed. 

Berth, quay crane and container yard are equipment that require huge investment. 

Therefore, these resources need to be operated efficiently. Inefficient operation can 

lead to bottlenecks and congestion at the port, which in turn leads to increased waiting 

times and turnaround time, as well as decreasing service level and port 

competitiveness. 



This paper will discusses a simultaneous berth, quay crane and yard allocation 

and collaborative strategy. This paper contributes significantly mainly to show the 

impact of simultaneous-collaborative berth, quay crane, and yard allocation. The rest 

of this paper is organized as follows. Section 2 has a literature review. Section 3 

presents the research methodology. Section 4 results and discussion, section 5 presents 

discussion and future research. 

 
2. Literature Review 

Berth Allocation Problem (BAP) could be either static or dynamic (Imai, 

Nishimura, & Papadimitriou, 2001). The static BAP (SBAP) assumes all ships to have 

already arrived at the port when the allocation process begins, whereas the dynamic 

BAP (DBAP) considers not only ships that have already arrived but also those that will 

arrive within the planning horizon. Depending on the spatial of the berth, BAP can be 

classified into two types: discrete and continuous problems (Imai, Sun, Nishimura, & 

Papadimitriou, 2005; Lalla-ruiz, González-velarde, Melián-batista, & Moreno-vega, 

2014). As to the discrete BAP, the quay is partitioned into a number of sections 

(berths), where one ship could be handled at a time. A vessel cannot moor across a 

berth boundary and multiple vessels cannot occupy the same berth at the same time. 

Whereas in the continuous BAP, ships could be served wherever empty spaces are 

available. Based on the scope of analysis, BAP can be grouped into two: (i) it only 

discusses the allocation of the berth itself and (ii) it simultaneously addresses allocation 

of berth and other resources, such as quay cranes and yard. In the simultaneous BAP 

discussion, coverage can be between berth and quay cranes (berth and crane allocation 

problem or between berth and yard (berth and yard allocation problem). 

 

The studies focusing on BAP 

Initially, the BAP was addressed by using First Come First Service (FCFS) 

approach. Lai and Shih (1992) conducted a study with the FCFS approach and 

proposed a heuristic algorithm to assign berths to calling containerships. Similarly Lai 

and Shih (1992), Brown et al. (1994) also conducted research with the FCFS approach. 

Observations were carried out in a naval port. An integer programming model was 

proposed to find the optimal ship-to-berth assignments. They conclude that in order to 

generate optimal allocation, the vessel is allowed to be shifted to another berth. 

According to Imai et al. (2001), these conditions cannot be applied to the commercial 

port, because loading and unloading activities should be done until finish. Imai et al. 

(1997) conducted a study on the commercial port where most of the allocation of ships 

was using the FCFS approach. They formulate a static berth allocation problem as a 

nonlinear integer program to minimize both the total time that the vessels spend at the 

berth and the degree of dissatisfaction incurred by the berthing order. Based on their 

research, it was concluded that to obtain optimum services, ways other than the first 

come first service rule should be explored. 

Imai et al. (2001) developed a static approach into a dynamic approach. They 

formulate a Mixed Integer Programming model. The model is solved using Sub 

Gradient Lagrangian Relaxation method. However, the proposed solution is still 

complicated. Imai et al. (2003) developed a model of nonlinear dynamic discrete BAP 



by adding the priority of scale. The model is solved using Genetic Algorithm. Golias 

et al. (2009) developed model of discrete and dynamic berth allocation problem and 

was formulated as a multiobjective combinatorial optimization problem where vessel 

service is differentiated upon priority agreements. A genetic algorithms based heuristic 

is developed to solve the resulting problem. Hansen et al. (2008) proposed a variable 

neighborhood search with the aim to find a solution with minimum total cost that 

includes the sub-costs of waiting, handling and earliness or tardiness of completion. 

Xu et al. [32] proposed a heuristic to deal with the DBAP. 

 

The studies focusing on Simultaneous BAP and QCAP 

The operations in a container terminal can be classified into the three areas: 

seaside, yard and landside (Bierwirth & Meisel, 2010) [30]. Among them, the seaside 

operations are critical due to the use of berths and quay cranes, two scarce resources 

with significant impacts on a container terminal [17]. In the container terminal seaside, 

berth allocation problem, quay crane assignment problem and quay crane scheduling 

problem are three essential seaside operations planning problems and they were often 

solved separately (Liang, Huang, & Yang, 2009; Raa, Dullaert, & Schaeren, 

2011)[18,26,34]. A separate study, however, was found likely to result in poor overall 

system performance due the neglect on their interrelationships. Thus, seaside 

operations planning problems have been suggested to be solved in an integrated way 

(Bierwirth & Meisel, 2010). 

The amount of researches on simultaneous berth and QC scheduling problem is 

relatively small. Park & Kim (2003) first proposed a scheduling method for berth and 

quay cranes under continuous berth situation. They formulate the MIP model, and a 

two phased solution procedure was adopted. In first phase berth allocation and rough 

quay crane allocation was determined, then in second phase detailed crane scheduling 

was generated considering minimal setups times. Meisel & Bierwirth (2009) 

investigated a similar problem with the first phase problem in Park & Kim (2003). They 

applied two metaheuristics, Squeaky Wheel Optimization and Tabu Search, 

respectively to alter the vessel priority list, and proposed a heuristic for searching better 

solutions under a given priority list. Their model allow quay cranes can be moved to 

other vessel before its current vessel finishes processing. Imai et al. (2008) developed 

a model of simultaneous berth and crane allocation problem with the aim to minimize 

the total time (waiting and handling time). They formulate the model as an integer 

modeling and was solved using Genetic Algorithm. Peng-fei and Hai-gui (2008) 

developed a dynamic simultaneous berth and crane allocation problem with 

mathematical models, where time of arrival of the vessel and handling time is 

stochastic. The goal is to minimize the average waiting time. The model is solved using 

Genetic Algorithm. Zhang et al. (2010) considered the coverage ranges for quay cranes 

when addressing the simultaneous berth and quay crane scheduling problem under 

continuous berth situation, and applied a sub-gradient optimization algorithm based on 

Lagrangian relaxation to search for near-optimal solutions. They solved by a 

polynomial-time enumeration procedure. Han et al. (2010) developed a model of mixed 

integer programming in a similar case by adding the priority scale. In this model quay 

cranes are allowed to move when another dock is performing a loading-unloading 



operation. Setup time of the crane, as a consequence of quay crane reallocation, is 

considered in the model. The model is solved using Genetic Algorithm. According to 

Hsu (2016) almost all these GAs can only support time-invariant QC assignment in 

which the number of QCs assigned to a ship is unchanged. Hsu (2016) 

mengembangkan model simultaneous berth dan quay crane allocation dengan 

penyelesaian menggunakan metode hybrid particle swarm optimization (HPSO), 

combining an improved PSO with an event-based heuristic.  Liang et al. (2009) 

addressed the dynamic berth allocation process, considering a number of factors, 

including arrival time, berth location and number of quay cranes. The objective of the 

problem was to minimize the sum of the handling time, waiting time and the delay time 

for every ship. A hybrid evolutionary algorithm was proposed to find an approximate 

solution for the problem. The proposed algorithm was compared to the existing 

methods and the computational experiments showed that the proposed approaches were 

more applicable to solve dynamic BAP. Meanwhile, Golias et al. (2014) developed a 

model by-objective optimization and the model was solved using a heuristic algorithm. 

Models with constraint non-crossing of quay cranes is developed by Zhihong and Na 

(2011), solved using Genetic Algorithm. Meanwhile, Liang et al. (2011) developed a 

model of multi-objective quay crane dynamic allocation problem and berth allocation 

problem, solved using Hybrid Genetic Algorithm. Chang et al. (2010) discusses the 

simultaneous dynamic discrete BAP-QCAP using Hybrid Parallel Genetic Algorithm 

approach (a combination of parallel genetic algorithm with a heuristic algorithm). Raa 

et al. (2011) developed a model of Mixed Integer Linear Programming by priorities of 

scale, resolved using Hybrid Heuristic solution procedure.  

Giallombardo et al. (2010) developed a model that integrates at the tactical level 

two decision problems arising in container terminals: the berth allocation problem, 

which consists of assigning and scheduling incoming ships to berthing positions, and 

the quay crane assignment problem, which assigns to incoming ships a certain quay 

crane profile (i.e. number of quay cranes per working shift). They present two 

formulations: a mixed integer quadratic program and a linearization which reduces to 

a mixed integer linear program. The objective function aims, on the one hand, to 

maximize the total value of chosen quay crane profiles and, on the other hand, to 

minimize the housekeeping costs generated by transshipment flows between ships. 

They solve the problem using heuristic algorithm which combines tabu search methods 

and mathematical programming techniques. 

Han et al. (2010) mengembangkan model simultan BAP-QCAP dengan 

mempertimbangkan sifat stokastik pada kedatangan kapal dan waktu handling. QCs 

are allowed to move to other berths before finishing processing on currently assigned 

vessels. The model is solved using genetic algorithm approach. A mixed integer 

programming model is proposed, and a simulation based Genetic Algorithm (GA) 

search procedure is applied to generate robust berth and QC schedule proactively. 

 

The studies focusing on BAP and Yard 

Berth and crane allocation problem generally aims to minimize the vessels’ 

turnaround time (e.g., Imai et al. 2001; Kim & Moon 2003; Guan & Cheung 2004; 

Cordeau et al. 2005; Wang & Lim 2007), the berth and yard problem generally focuses 



more on the resource utilization efficiency and container movement (movement 

between berth and storage yard). Berth and yard allocation heavily depend on each 

other. Zhen et al. (2011) developed an integrated model that considers simultaneously 

the two decision problems with the goal of generating a berth template and a yard 

template that fit well with each other. Berth template problems are solved first whose 

results are used as the input of the yard template problem. The result is refined by using 

an iterative process which is repeated until no improvement is found. The model aim 

of minimizing the service cost and operation cost. 

Hendriks et al. (2013) addressed the integrated berth and yard planning problem 

by means of an alternating berth and yard planning heuristic approach. They consider 

as simultaneous berth and yard planning problem with the goal of determining the 

minimum distance of container shifting from berth to yard and vice versa.  

Li and Yip (2013) consider the joint planning for yard storage and berth 

template in export terminals. Scattered stacking which belongs to cluster strategy is 

adopted to store clusters in a scattered way. In their work, the berthing positions and 

the amount of containers in each cluster are first obtained and the exact locations of 

containers are then derived.  

Lee & Jin (2013) developed a simultaneous model of berth and yard for 

transshipment process with the goal of minimizing the cost of container movement. 

The problem is formulated as a mixed integer programming model and solved by a 

memetic heuristic approach. Jin et al. (2015) reformulate the problem in Lee & Jin 

(2013) as a set covering model and solve it by a column generation approach.  

Tao & Lee (2015) addressed a joint planning problem for berth and yard 

allocation in transshipment terminals. They proposed multi-cluster stacking strategy to 

split each transshipment flow into a number of container clusters and then stack each 

cluster in different yard blocks. A mixed integer quadratic programming model is 

formulated to minimize the total distance of exchanging containers between mother 

vessels and feeders.  

Robenek et al. (2014) Robenek et al. (2014) conducted a simultaneous study of 

berth and yard by taking problems in bulk terminals. The difference between bulk port 

and other container terminals is the cargo types on the vessels in a bulk port are various 

and thus a wide variety of specialized equipment is needed to handle such cargos. An 

exact algorithm is designed to solve the integrated problem where the master problem 

is modeled as a set-partition problem and sub problems are solved using mixed integer 

programming. 

 

3. Research Methodology 

We use simulation as research methodology. Simulation is used as an approach 

to modeling complex systems so that it is difficult to use an analytical model or when 

the system contains stochastic and uncertain variables (Pujawan et al., 2015). Berth 

allocation is an NP-hard problem, so the optimal solution is difficult to solve by 

analytical methods, especially for large entities (Homayouni, Tang, & Motlagh, 2014). 

Operational activities at ports involving one or more container terminals, which involve 

the regulation of multiple resources such as quay cranes, rubber tyred gantry, and 

internal transporters, are categorized as highly complex problems (Abadi, Baphana, & 



Ioannou, 2009; Kamrani, Mohsen, Esmaeil, & Golroudbary, 2014; Kia, Shayan, & 

Ghotb, 2002; Kotachi, Rabadi, & Obeid, 2013).  

Simulation methods have been used by some researchers, including models for 

planning and management systems in ports (Tahar & Hussain, 2013), imitating port 

operations and estimating performance and outcomes through several scenarios 

(Kotachi et al., 2013). Kotachi et al. (2013) used a simulation method to analyze multi 

modal operations at the port. Zeng & Yang (2009) uses a method of integration between 

simulations with optimization methods to determine loading and discharging schedules 

in container terminals. Kulak et al. (2013) uses a simulation method to determine 

strategies to improve long-term container terminal performance by identifying 

bottlenecks as the cause of inefficient processes, identifying terminal configuration 

changes in resource allocation, and implementing appropriate strategies to overcome 

bottlenecks. Tahar & Hussain (2013) conducted a simulation to determine the berthing 

schedule at Kelang Terminal Container (KTC) with first come first service approach 

with two priority scenarios based on ship type (mainline, feeder, coastal, ro-ro) and 

container number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Research Step 

 

Park & Dragovic (2009) used a simulation method to analyze queue and 

bottleneck problems, container handling, internal transporter, ship schedule, container 

yard utilization, and port throughput. Kia et al. (2002) used a simulation method to 

compare the container yard location in the existing port area with a container yard 

outside the harbor area. Abadi et al. (2009) used a simulation method to determine the 

effect of ship turnaround and transportation costs due to truck inspection before 

entering the port. Pujawan et al. (2015) uses a simulation method to integrate delivery 

planning and silo capacity determination where demand is uncertain. Some researchers 

Model Development 

Verification & Validation 

Experiments Development 

Observing process, collecting data, modeling the process 

Verification of simulation logics and testing the resultd to ensure validity 

Design experiments with fractional design, run experiment with 5 replication 

Analysis of Results 

Analysis of Waiting & Turnaround Time 



use a combination of simulations with analytical methods. Arango et al. (2011) 

integrate between Genetic Algorithm with simulation (ARENA). Ilati & 

Sheikholeslami (2014) used a simulation method combined with meta-heuristic. 

We adapted the standar simulation methodology in this study (Altiok & 

Melamed, 2007; Kelton, Sawdoski, & Sawdoski, 2010). Figure 1 shows the four major 

steps where each will be explained in the following sections. The first is developing 

the simulation model that started with the observation of real system, understanding 

the process, and collecting data for input parameters. In any simulation study, it is 

necessary to ensure that the model reflects the real system and the simulation logics 

works properly (Kleijnen, 1995; Sargent, 2013). Our second step, therefore, was 

verification and validation of the simulation model. The third step was running the 

experiments following the full factorial design with five replications for each treatment. 

Full factorial is a type of experimental design where all combination of factors are 

considered (Montgomery, 1997). The experimental results were used to evaluate which 

factors that have significant impacts on response (waiting time) by the use of analysis 

of variance (ANOVA). The details of each step will be elaborated in the following 

sections. 

 

4. Result  

Scenario Using Full Factorial Design 

In the previous study, berth, quay crane and yard were discussed separately, or 

discussed by combining one of the factors, eg berth and crane or dock and yard. In this 

paper, berth, quay crane and yard are considered simultaneously. In this study also 

added strategic factors. 

To see the effect of each factor on the waiting time created a combination of 

each level of every factor. Table 1 shows four factors where each factor consists of two 

levels ie low (-1) and high (1). Berth and crane are the factors most often considered in 

developing the model, among which are done by Y. M. Park & Kim, 2003, Imai, 2008, 

Peng-fei & Hai-gui, 2008 dan Liang et al., 2009. Zhen et al., (2011), Li & Yip (2013).  

Lee & Jin (2013) developed the model by considering the relationship between berth 

and yard. 

Table 1. Factors and level 
Factors Number of Level Level 

Service_Order (SO) 2 -1: FCFS 
 1: Priority 

Berth-Yard (B) 2 -1: Flexible 
 1: Fixed 

Crane (C) 2 -1: Fixed 
 1: Flexible 

Strategy (S) 2 -1: Non Collaboration 
 1: Collaboration 

 

By using full factorial design, it produces a combination of 2 x 2 x 2 x 2 or 16 

scenarios. The combination or scenario generated from the four factors can be seen in 

Table 2. The first combination is a combination of service_order at low level (-1): firs 

come firs service (FCFS); berth-yard at low level (-1): flexible; crane at low level (-1): 

fixed and low level strategy (-1): non-collaboration. The first scenario is the current 



condition (existing condition). The indicator used to measure the response is the 

waiting time of the ship. Each scenario is simulated using ARENA software with length 

of replication for one year (365 days) and each combination runs in 5 replications.  

 

Table 2. Scenario 
Scenario SO B C S 

1 -1 -1 -1 -1 
2 -1 -1 -1 1 

3 -1 -1 1 -1 

4 -1 -1 1 1 

5 -1 1 -1 -1 

6 -1 1 -1 1 

7 -1 1 1 -1 

8 -1 1 1 1 

9 1 -1 -1 -1 

10 1 -1 -1 1 

11 1 -1 1 -1 

12 1 -1 1 1 
13 1 1 -1 -1 

14 1 1 -1 1 

15 1 1 1 -1 

16 1 1 1 1 

 

Testing Factor Influence Using Anova 

The output of the simulation (response) is the waiting time of the ship. The 

response of the simulation results was processed using the minitab 17 shown in Table 

3. The result of the analysis resulted two factors showed significant effect on the 

waiting time, while the other two factors had no significant effect. 

The p-value value of the crane is 0.000, using α of 0.05, it can be said that there 

is significant influence on how to allocate crane (fixed crane allocation and crane 

allocation with flexibility) to ship waiting time. The p-value value for the strategy 

factor is 0.000 and it can be said that the difference in strategy implementation 

(collaboration and non-collaboration) significantly affects the waiting time of the 

vessel. The service_order factor has a p-value of 0.390 (p-value> nlai α = 0.05) so it 

can be said that the servie order of ship has no significant effect to waiting time. 

Berth_yard factor has a p-value value of 0.184. Thus it can be said that there is no 

significant influence (berth_yard allocation with flexible or fixed system) to ship 

waiting time. The p-value of interaction of two factor (crane and strategy) is 0,000, 

which means that the interaction between the two factors significantly affects the 

waiting time of the vessel.   

Although individual service_order factors have no significant effect on total 

waiting time, interaction between service_order and crane allocation has significant 

influence (p-value of 0.022). The p-value of two-factor interaction between 

service_order and strategy is 0.072. This value is slightly higher than value of α of 0.05. 

Using α value of 0.05 consistently can be concluded that the interaction between these 

two factors did not give significant influence to the waiting time. The interaction 

between service_order and berth_yard, berth_yard and crane, berth_yard and strategy 



has p-value values of 0.217, 0.284, and 0.972, respectively. These values indicate that 

there is no interaction between the two factors. 

 

Table 3. Anova for the analysis of the waiting time of the ship 
Analysis of Variance 

Source                                  DF   Adj SS   Adj MS  F-Value  P-Value 

Model                                   15  2689929   179329    37.65    0.000 

  Linear                                4  2272584   568146   119.27    0.000 

    Service_Order                         1     3570     3570     0.75    0.390 

    Berth_Yard                            1     8612     8612     1.81    0.184 

    Crane                                 1   586476   586476   123.12    0.000 

    Strategy                              1  1673927  1673927   351.40    0.000 

  2-Way Interactions                      6   371594    61932    13.00    0.000 

    Service_Order*Berth_Yard              1     7395     7395     1.55    0.217 

    Service_Order*Crane                   1    26254    26254     5.51    0.022 

    Service_Order*Strategy                1    15931    15931     3.34    0.072 

    Berth_Yard*Crane                      1     5569     5569     1.17    0.284 

    Berth_Yard*Strategy                   1        6        6     0.00    0.972 

    Crane*Strategy                        1   316439   316439    66.43    0.000 

  3-Way Interactions                      4    34024     8506     1.79    0.143 

    Service_Order*Berth_Yard*Crane        1       30       30     0.01    0.937 

    Service_Order*Berth_Yard*Strategy     1       15       15     0.00    0.956 

    Service_Order*Crane*Strategy          1      521      521     0.11    0.742 

    Berth_Yard*Crane*Strategy             1    33458    33458     7.02    0.010 

  4-Way Interactions                      1    11726    11726     2.46    0.122 

    Service_Order*Berth_Yard*Crane*Strategy    1    11726    11726     2.46    0.122 

Error                                   64   304868     4764 

Total                                   79  2994797 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

69.0186  89.82%     87.43%      84.09% 

 

The p-value of three-factor interaction between berth_yard, crane and strategy 

is 0.010. It can be concluded that the interaction between these three factors 

significantly influence the waiting time of the vessel. The interaction of three factors 

between service_order, berth_yard and crane resulted in a p-value of 0.937. The 

interaction of three factors between service_order, berth_yard and strategy has a p-

value of 0.956. The interaction of three factors between service_order, crane and 

strategy resulted in a p-value of 0.742. Thus it can be concluded that the interaction 

between the three factors does not give a significant effect on the waiting time of the 

ship. The interaction of four factors between service_order, berth_yard, crane and 

strategy has a p-value of 0.122. Thus, the interaction of these four factors does not have 

a significant effect on the waiting time of the vessel. The R-square value for the wait 

time response is 89.82% which means that the changes occurring at the 89.82% waiting 

time can be explained from the system. 

 

Scenario analysis for waiting time 

The analysis is based on the performance of the waiting time of each scenario. 

Table 4 shows the wait time of 5 replications of each scenario. Scenario 1 on replication 

1 resulted in a waiting time of 173.23 hours, in replication 2 resulting in a waiting time 

of 260.97 hours, with an average waiting time of 192.50 hours. Scenario 2 on 

replication 1 produces a wait time of 44.18 hours, on replication 2 resulting in a wait 

time of 25.42 hours, with an average waiting time of 47.03 hours, and so on. 



 

 

Table 4. Analysis of results based on ship's waiting time 

 
Waiting Time (hours) 

Average 
  Replication 1 Replication 2 Replication 3 Replication 4 Replication 5 

Scenario-1 173.23 260.97 164.80 178.15 185.35 192.50 

Scenario -2 44.18 25.42 102.97 30.89 31.67 47.03 

Scenario -3 666.03 471.42 471.71 408.31 463.81 496.26 

Scenario -4 139.53 86.89 118.90 134.36 132.20 122.37 

Scenario -5 140.24 146.64 161.53 186.15 154.31 157.77 

Scenario -6 22.71 45.31 52.07 34.92 59.34 42.87 

Scenario -7 719.69 520.76 457.22 452.38 503.67 530.75 

Scenario -8 120.09 96.57 119.53 118.80 148.43 120.68 

Scenario -9 174.09 173.71 171.30 274.52 665.23 291.77 

Scenario -10 25.45 40.47 25.01 32.16 24.36 29.49 

Scenario -11 476.41 430.02 483.51 436.18 508.35 466.89 

Scenario -12 95.01 97.67 78.34 82.06 114.33 93.48 

Scenario -13 223.27 133.15 189.41 159.43 149.24 170.90 

Scenario -14 34.68 44.26 30.02 46.55 41.95 39.49 

Scenario -15 561.43 468.60 556.82 455.49 493.47 507.16 

Scenario -16 19.36 16.16 19.20 15.71 17.02 17.49 

 

Scenario 1 is a combination of service_order: fisrt come first service; 

berth_yard: flexible; crane: fixed; strategy: non collaboration resulted in an average 

waiting time of 192.50 hours. Scenario 2 is a combination of service_order: fisrt cone 

first service; berth_yard: flexible; crane: fixed; strategy: collaboration resulted in 

average waiting time of 47.03 hours. The average waiting time decreased from 192.50 

hours to 47.03 hours. In the first replication there was a decrease of 129.05 hours, the 

second replication was reduced by 135.55 hours, and so on. The average decrease of 

waiting time from scenario 1 to scenario 5 is 145.47 hours. 

This result is consistent with anova analysis showing that a non-collaboration 

strategy change to collaboration will result in a reduction of approximately 351.4 hours. 

The interaction of two factors between berth_yard and strategy and between crane and 

strategy resulted in significant effect on ship waiting time. The interaction of three 

factors between berth_yard, crane and strategy showed significant effect on ship 

waiting time. Thus the decrease of waiting time of 143.47 hours caused by the main 

influence of the strategy factor and the influence of interaction between two factors and 

interaction of three factors. 

Scenario 3 is a combination of service_order: fisrt cone first service; 

berth_yard: flexible; crane: flexible; strategy: non collaboration resulted in average 

waiting time of 496.26 hours. Based on anova analysis, crane allocation significantly 

influences waiting time. The interaction of two factors between service_order and 

crane and between cranes and strategy resulted in a significant effect on the waiting 

time. The interaction of three factors between berth_yard, crane and strategy also has 

significant effect on waiting time. Changes in the crane allocation system, the 

interaction of the two factors and the interaction of the three factors led to an increase 

in average waiting time of 303.76 hours or from 192.50 hours to 496.26 hours. 

Scenario 4 is a combination of service_order: fisrt cone first service; 

berth_yard: flexible; crane: flexible; strategy: collaboration resulted in average waiting 



time of 122.37 hours or a decrease of waiting time of 70.13 hours compared with 

scenario 1. The main influence of crane factor and factor strategy and the influence of 

two factor interaction between service_order and crane and crane and strategy, and the 

effect of interaction three factors between berth_yard, crane and strategy cause the 

waiting time to decrease by 70.13 hours. 

 

Table 5. Comparison of waiting times and existing conditions 

Waiting Time (hours) 
Average 

 Scenario Replication 1 Replication 2 Replication 3 Replication 4 Replication 5 

Scenario -1 0.00 0.00 0.00 0.00 0.00 0.00 

Scenario-2 -129.05 -235.55 -61.83 -147.26 -153.67 -145.47 

Scenario-3 492.80 210.45 306.91 230.16 278.46 303.76 

Scenario-4 -33.70 -174.08 -45.90 -43.80 -53.15 -70.13 

Scenario-5 -32.99 -114.33 -3.28 8.00 -31.04 -34.73 

Scenario-6 -150.51 -215.66 -112.74 -143.23 -126.01 -149.63 

Scenario-7 546.47 259.79 292.42 274.22 318.33 338.25 

Scenario-8 -53.14 -164.39 -45.27 -59.35 -36.92 -71.82 

Scenario-9 0.86 -87.26 6.50 96.37 479.88 99.27 

Scenario-10 -147.78 -220.50 -139.80 -145.99 -160.99 -163.01 

Scenario-11 303.18 169.05 318.70 258.03 323.00 274.39 

Scenario-12 -78.22 -163.30 -86.47 -96.09 -71.02 -99.02 

Scenario-13 50.04 -127.82 24.61 -18.72 -36.10 -21.60 

Scenario-14 -138.55 -216.71 -134.78 -131.61 -143.40 -153.01 

Scenario-15 388.20 207.63 392.02 277.34 308.12 314.66 

Scenario-16 -153.87 -244.81 -145.60 -162.44 -168.33 -175.01 

 

Scenario 5 is a combination of service_order: fisrt cone first service; 

berth_yard: fixed; crane: fixed; strategy: non collaboration resulted in an average 

waiting time of 157.77 hours. Compared to scenario 1 changes occur on berth_yard 

allocations from flexible to fixed. In the anova table, changes in the allocation system 

do not have a significant effect on the total waiting time. Significant influence occurred 

in the interaction of three factors, namely berth_yard, crane and strategy. Decreased 

average waiting time of 34.73 hours apparantely due to the influence of the interaction 

between the three factors. 

Scenario 6 is a combination of service_order: fisrt cone first service; 

berth_yard: fixed; crane: fixed; strategy: collaboration produces an average waiting 

time of 42.87 hrs. Compared to scenario 1 changes occur in berth_yard allocation, 

crane allocation from flexible to fixed, and strategy change from non collaboration to 

collaboration. It is clear here that there is a significant influence of the main factors of 

crane allocation and strategy change. There are significant interactions affecting the 

waiting time, ie the interaction of two factors and the interaction of three factors. The 

effect of two factor interaction between service_order and crane and between crane and 

strategy. The effect of interaction between three factors occurs between berth_yard, 

crane and strategy. The total effect of scenario 6 resulted in a decreasing wait time of 

149.63 hours. 

Scenario 7 is a combination of service_order: fisrt cone first service; 

berth_yard: fixed; crane: flexible; strategy: non collaboration. Compared to scenario 1, 

changes occur on two factors, namely berth_yard with fixed allocation system and 

crane allocation system with flexible system. Based on the anova table of berth_yard 

allocation does not give significant effect to ship waiting time, on the contrary the crane 



allocation gives significant effect to the waiting time. There are two influences of two 

factor interactions: service order and crane and crane and strategy. The interaction of 

three factors between berth_yard, crane and strategy also has a significant effect on 

waiting time. Total interactions resulted in a wait time change of 530.75 hours, from 

the previous waiting time of 192.50 or an increase of waiting time to an average of 

338.25. 

Scenario 8 is a combination of service_order: fisrt cone first service; 

berth_yard: fixed; crane: flexible; strategy: collaboration. Compared to scenario 1, 

there are three factors that change ie berth_yard, crane and strategy. Based on the anova 

table, the main factors have a significant effect on the waiting time, ie cranes and 

strategy. The interaction of two factors namely service_order and crane and crane and 

strategy and interaction of three factors between berth_yard, crane and strategy have a 

significant effect on waiting time. The overall factor influence resulted in decreasing 

waiting time from 192.50 to 120.68 or an average decrease of 71.82 hours.  

Scenario 9-16 is a development of scenario 1-8. In each scenario 1-8 there is a 

one factor change that is service_order. There is no significant influence of the main 

factors. Significant influence occurs only in the interaction of two factors between 

service_order and crane. Thus the total effect that occurs between scenarios 1-8 and 9-

16 is almost similar. 

Based on the results of the waiting time analysis of scenario 1 to scenario 16 on 

four factors shows that the main influence of crane and strategy, the influence of two-

factor interaction (service_order and crane, crane and strategy), and the influence of 

three-factor interaction (berth_yard, crane and strategy) shown in Table 4 and Table 5 

are consistent with the anova table shown in Table 3. 

 

Determine the best scenario 

Each scenario produces different responses on each ship. There is no more 

dominant scenario than any other scenario. The selection of best scenarios is done 

gradually. First determine the best scenarios on each ship for each response. The second 

stage determines the best scenario in aggregate. The best scenario scenario in aggregate 

is done in two ways, ie determining the highest frequency of each vessel and using the 

overall average value. Each scenario is compared to scenario 1 which is the existing 

condition.  

Table 6 shows the average waiting time of each scenario, while Table 7 shows 

the comparative results of each scenario with scenario 1. The best scenario for ship 1 

is scenario 10 with average waiting time of 33.33 hours or there is a decrease in waiting 

time equal to 501.36 hours compared with scenario 1. The best scenario for ship 2 is 

scenario 10 with waiting time of 33.81 hours. In scenario 10 there is a decrease in 

waiting time of 430.88 hours compared with scenario 1. From table 7 can be seen that 

scenario 10 produces the highest frequency. Thus for the wait time response, the best 

scenario is scenario 10. 



Table 6. Analysis of the waiting time of each scenario 

Waiting Time  (R1-R5) 

Vessel S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15 S-16 

K1 534.69 67.02 1424.14 45.35 473.99 47.26 1540.83 140.90 972.35 33.33 1286.13 104.26 423.36 42.46 1511.12 153.02 

K2 464.69 35.80 1416.79 100.47 414.58 42.56 1393.78 118.97 900.36 33.81 1128.26 105.30 445.34 48.76 1247.87 177.36 

K3 555.32 44.84 1405.33 87.12 446.85 39.18 1468.11 124.16 901.51 29.45 1133.67 96.03 373.73 48.92 1266.82 167.93 

K4 660.39 72.06 1488.99 163.48 559.98 45.43 1814.99 164.43 614.98 39.41 1566.79 139.96 503.12 40.00 1790.57 201.18 

K5 454.29 51.98 1396.18 98.69 372.50 60.46 1308.98 102.66 758.19 30.82 1116.67 80.82 454.11 46.88 1312.53 197.44 

K6 465.69 29.29 1217.39 82.09 309.96 29.65 1133.07 126.86 757.16 43.12 793.38 64.96 312.01 47.49 1204.26 129.50 

K7 411.39 30.90 1155.59 154.02 275.26 47.29 1111.99 113.07 588.95 39.31 1117.28 87.81 304.72 45.22 1164.98 126.52 

K8 422.88 50.53 1003.71 135.97 316.85 36.47 1209.59 98.13 612.30 46.56 884.43 55.68 300.65 41.67 920.50 161.73 

K9 490.76 33.90 1099.96 141.87 378.53 30.79 1167.49 154.08 769.27 30.90 927.57 66.77 324.75 32.78 1275.29 156.58 

K10 296.68 45.07 582.50 173.71 301.40 28.24 792.79 83.37 664.66 28.03 790.16 41.15 229.76 28.69 766.92 104.09 

K11 38.23 38.50 95.41 45.35 18.97 22.58 100.02 69.58 29.85 26.73 71.89 76.94 58.11 30.97 82.78 94.62 

K12 25.69 26.48 70.72 100.47 34.19 27.91 121.39 87.85 44.82 16.70 98.32 94.30 48.28 47.11 93.15 125.18 

K13 3.49 20.56 35.40 87.12 8.31 29.43 57.48 99.19 3.31 9.70 52.79 92.58 15.34 4.45 25.50 98.86 

K14 44.60 63.56 192.96 163.48 49.21 48.84 154.61 165.67 75.45 26.30 231.95 99.00 105.05 50.70 158.27 162.31 

K15 2.86 17.22 41.46 98.69 3.02 8.93 45.86 68.54 7.92 11.60 45.53 81.37 8.27 8.23 60.72 69.73 

K16 40.31 57.37 65.56 82.09 25.72 37.33 148.15 81.45 38.94 27.10 174.82 63.80 58.93 50.33 88.23 112.05 

K17 72.73 55.27 160.10 154.02 45.72 63.28 223.05 153.66 102.32 36.93 228.69 116.70 104.93 46.28 202.82 203.22 

K18 78.40 47.53 133.32 135.97 44.20 46.53 162.89 143.13 61.79 32.85 159.67 95.19 80.09 41.03 154.02 175.96 

K19 59.92 71.65 142.41 141.87 74.85 56.23 200.16 141.42 73.17 57.16 211.91 96.89 117.11 57.52 175.01 168.59 

K20 69.31 68.80 136.99 173.71 36.21 37.72 172.94 134.11 36.30 32.60 179.13 126.62 82.43 43.11 118.35 181.70 

K21 77.29 72.96 173.61 163.13 58.59 87.78 182.13 153.35 72.89 30.33 200.30 125.58 80.07 43.95 156.57 198.87 

K22 39.90 56.20 144.97 113.38 47.37 43.40 108.75 145.37 57.12 23.97 172.65 110.39 84.97 21.72 137.06 160.32 

K23 58.82 29.02 65.55 98.09 32.93 55.89 74.87 86.59 44.31 17.15 82.14 85.77 41.50 37.16 93.10 122.35 

K24 4.63 12.88 43.82 96.11 11.48 18.48 48.71 75.92 2.71 13.65 35.58 81.26 12.64 7.64 51.82 84.05 

K25 40.85 48.13 143.74 147.16 48.20 66.97 108.34 112.63 47.81 19.06 160.55 92.93 72.28 40.09 132.01 134.87 

K26 38.14 41.22 126.44 95.62 44.37 50.06 158.15 114.44 60.67 20.36 219.29 99.31 85.26 51.75 146.02 155.78 

K27 52.12 25.53 110.86 170.00 29.07 28.05 58.11 156.61 23.66 23.14 71.32 147.47 29.89 21.67 108.86 72.69 

K28 53.00 70.07 148.51 109.34 56.81 55.82 155.97 149.00 65.65 31.00 195.21 79.44 97.30 53.73 111.42 187.29 

K29 40.83 79.44 169.03 124.04 56.30 50.63 168.38 134.72 72.94 44.09 203.82 102.68 102.19 64.93 151.09 177.31 

Average 193.03 47.03 496.26 120.08 157.77 42.87 530.75 120.68 291.77 29.49 466.89 93.48 170.90 39.49 507.16 146.93 

 

 

 

 



Table 7. Comparison of Each Scenario with Scenario 1 (Response: Waiting Time) 

  Waiting Time (compare with existing condition (scenario-1)) 

Vessel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

K1 0.00 -467.67 889.45 -489.34 -60.70 -487.43 1006.14 -393.79 437.66 -501.36 751.44 -430.43 -111.33 -492.23 976.43 -381.67 

K2 0.00 -428.90 952.09 -364.23 -50.11 -422.14 929.09 -345.73 435.66 -430.88 663.57 -359.39 -19.36 -415.93 783.17 -287.34 

K3 0.00 -510.48 850.01 -468.20 -108.47 -516.15 912.79 -431.16 346.19 -525.88 578.35 -459.30 -181.59 -506.40 711.50 -387.39 

K4 0.00 -588.32 828.61 -496.90 -100.40 -614.95 1154.61 -495.96 -45.40 -620.98 906.41 -520.42 -157.27 -620.38 1130.18 -459.20 

K5 0.00 -402.31 941.90 -355.59 -81.79 -393.83 854.69 -351.63 303.90 -423.47 662.38 -373.47 -0.18 -407.41 858.24 -256.85 

K6 0.00 -436.40 751.69 -383.61 -155.74 -436.04 667.38 -338.84 291.46 -422.58 327.68 -400.73 -153.68 -418.21 738.57 -336.20 

K7 0.00 -380.50 744.20 -257.37 -136.13 -364.11 700.60 -298.32 177.55 -372.09 705.89 -323.58 -106.67 -366.18 753.58 -284.87 

K8 0.00 -372.35 580.82 -286.91 -106.03 -386.41 786.71 -324.76 189.42 -376.33 461.55 -367.21 -122.24 -381.21 497.62 -261.16 

K9 0.00 -456.86 609.20 -348.89 -112.23 -459.97 676.74 -336.68 278.51 -459.86 436.82 -423.98 -166.01 -457.97 784.53 -334.18 

K10 0.00 -251.62 285.82 -122.97 4.72 -268.44 496.11 -213.32 367.98 -268.65 493.48 -255.53 -66.92 -267.99 470.23 -192.59 

K11 0.00 0.27 57.18 7.11 -19.26 -15.65 61.79 31.35 -8.39 -11.50 33.66 38.71 19.88 -7.26 44.55 56.39 

K12 0.00 0.79 45.03 74.78 8.51 2.22 95.70 62.16 19.14 -8.99 72.63 68.61 22.59 21.42 67.46 99.49 

K13 0.00 17.07 31.91 83.63 4.82 25.94 53.99 95.70 -0.18 6.21 49.30 89.09 11.85 0.96 22.01 95.37 

K14 0.00 18.96 148.36 118.88 4.61 4.25 110.01 121.07 30.86 -18.30 187.35 54.40 60.45 6.10 113.67 117.72 

K15 0.00 14.35 38.60 95.83 0.15 6.06 43.00 65.68 5.06 8.74 42.67 78.50 5.40 5.37 57.86 66.87 

K16 0.00 17.06 25.25 41.78 -14.59 -2.98 107.84 41.14 -1.37 -13.21 134.51 23.49 18.62 10.02 47.92 71.74 

K17 0.00 -17.46 87.37 81.29 -27.01 -9.45 150.31 80.93 29.59 -35.81 155.96 43.97 32.20 -26.45 130.09 130.48 

K18 0.00 -30.87 54.92 57.57 -34.21 -31.87 84.49 64.73 -16.61 -45.55 81.27 16.79 1.69 -37.37 75.62 97.56 

K19 0.00 11.73 82.49 81.95 14.93 -3.70 140.24 81.50 13.25 -2.76 151.98 36.97 57.19 -2.40 115.09 108.67 

K20 0.00 -0.51 67.68 104.40 -33.09 -31.59 103.64 64.80 -33.01 -36.71 109.82 57.31 13.12 -26.19 49.05 112.39 

K21 0.00 -4.33 96.32 85.85 -18.69 10.50 104.85 76.06 -4.40 -46.96 123.01 48.30 2.78 -33.33 79.29 121.58 

K22 0.00 16.30 105.07 73.48 7.47 3.50 68.85 105.47 17.22 -15.93 132.76 70.49 45.08 -18.18 97.17 120.42 

K23 0.00 -29.79 6.73 39.27 -25.89 -2.93 16.05 27.77 -14.51 -41.66 23.32 26.96 -17.31 -21.66 34.28 63.53 

K24 0.00 8.26 39.19 91.48 6.85 13.85 44.08 71.29 -1.92 9.02 30.95 76.63 8.01 3.01 47.19 79.42 

K25 0.00 7.27 102.88 106.31 7.35 26.12 67.49 71.78 6.95 -21.79 119.70 52.08 31.43 -0.76 91.16 94.01 

K26 0.00 3.08 88.30 57.48 6.24 11.93 120.01 76.30 22.54 -17.77 181.15 61.17 47.12 13.61 107.89 117.65 

K27 0.00 -26.59 58.74 117.88 -23.05 -24.06 5.99 104.49 -28.46 -28.98 19.20 95.35 -22.23 -30.45 56.74 20.57 

K28 0.00 17.07 95.51 56.34 3.81 2.82 102.97 96.01 12.65 -22.00 142.21 26.44 44.30 0.74 58.43 134.30 

K29 0.00 38.61 128.20 83.21 15.47 9.80 127.55 93.89 32.11 3.26 162.99 61.85 61.36 24.10 110.26 136.48 
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Turnaround time (comparisons based on best scenarios) 

Table 8 shows turnaround time for collaboration and non-collaboration strategies. 

The vessel 1-10 decreased a very significant ship turnaround time of 343.98 hours, while the 

11-29 ships decreased by 25.87 hours. Overall turnaround time decreased by an average of 

135.56 hours. 

Table 8. Turnaround Time 

Turnaround Time 

Vessel Non Collaboration Collaboration Vessel Non Collaboration Collaboration 

K1 2490.85 2075.75 K16 2090.21 2076.59 

K2 1871.35 1552.12 K17 1181.82 1189.26 

K3 1607.18 1191.86 K18 1664.20 1529.13 

K4 1470.86 894.53 K19 465.07 474.78 

K5 1792.48 1458.62 K20 922.61 950.07 

K6 1391.33 1004.28 K21 1559.54 1549.66 

K7 996.89 616.68 K22 1672.50 1634.35 

K8 1309.29 1098.96 K23 2854.79 2542.70 
K9 1676.79 1353.78 K24 1337.92 1364.63 

K10 2462.26 2382.92 K25 1717.28 1768.29 

K11 1604.46 1654.34 K26 587.78 608.56 

K12 2396.90 2242.70 K27 784.38 771.79 

K13 2187.67 2168.77 K28 1317.47 1260.05 

K14 1170.95 1082.39 K29 1000.56 1044.99 

K15 1748.19 1859.69    
 

5. Discussion and Future Research 

Based on the waiting time response, it shows that scenario 10 is the best scenario. 

Scenario 10 is a combination where service_order is a priority; berth_yard allocations are 

flexible; crane allocation is fixed; strategy used is collaboration strategy. Anova analysis 

shows that crane allocation and strategy selection have significant individual influence on 

both response both waiting time and number of waiting vessels. These results reinforce 

previous research that crane allocation is highly influential on ship waiting time (Han et al., 

2010; Liang et al., 2009). Quay cranes are a resource that has significant influence on 

container terminals (Han et al., 2010; Liang et al., 2009). 

The study also confirmed that flexible crane allocations should consider the time for 

the displacement process so as not to interfere with other cranes that are engaged in loading 

and unloading activities and propose to use break time to move and consider the time set up 

of crane displacement (Han et al., 2010). If the break time period is not the same, 

recalculation is required to recalculate the number of cranes required, especially if the arrival 

of the vessel does not always occur at the beginning of the working period. 

For pairwise comparisons between non-collaboration strategies (scenarios with odd 

numbers) and collaboration strategies (even-numbered scenarios) then collaboration 

strategies always deliver better results for both responses. Scenario 2 produces less averages 

waiting time than scenario 1, scenario 4 produces less averages waiting time than scenario 3, 

scenario 6 produces less averages waiting time compared to scenario 5, and so on. 

Comparison of the complete waiting time response can be seen in table 8. 
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Table 9. Comparison of non collaboration and collaboration  

 
Non Collaboration collaboration 

Scenario Waiting Time Waiting Time Scenario 

Scenario 1 193.03 47.03 Scenario 2 
Scenario 3 496.26 120.08 Scenario 4 
Scenario 5 157.77 42.87 Scenario 6 
Scenario 7 530.75 120.68 Scenario 8 
Scenario 9 291.77 29.49 Scenario 10 
Scenario 11 466.89 93.48 Scenario 12 
Scenario 13 170.90 39.49 Scenario 14 
Scenario 15 507.16 146.93 Scenario 16 

 

When comparing simultaneous allocations of berth, yard, and crane, scenarios 3, 7, 9, 

11 and 15 produce a larger average waiting time compared to scenario 1. These results are 

thought to derive from factor and interaction effects between factors such as discussed in 

sub-section 5.4. In this study, the order of service by using priority is only effective for 

collaborative strategies. For non-collaboration strategies service priority has no significant 

effect. In subsequent research it is necessary to consider searching for the order of service 

with priority systems (M. M. Golias, Boile, & Theofanis, 2010; Han et al., 2010). 

Berth_yard no significant impact, both individually and interactions between factors. 

However, this result can fit up the research conducted by Lee & Jin, (2013), M. P. M. 

Hendriks et al., (2013) dan Tao & Lee, (2015). Their research is basically aimed at 

determining minimum transporter movement. The purpose of this study is slightly different 

from the research they do, that is more to determine the effect of berth_yard allocation to the 

waiting time. 

Berth-yard has a significant influence when interacting with two other factors such as 

cranes and strategy or service_order and strategy. This is presumably because the distance 

from the JICT and Koja terminals is relatively short and the speed of the head truck in this 

model is considered constant. 

Another factor is the dwelling time in both terminals which is assumed to be ideal and 

definite. In this model, if the container yard (inbound and outbound) cannot accommodate 

the container, the container will be sent to the temporary yard (buffer) to ensure that the 

conainer yard can hold all containers entering the terminal. In a real system, the actual yard 

buffer has been applied by put container out of place. For inbound containers, buffer yards 

typically use temporary yard (TPS) commonly used for overbrengen containers. In 

subsequent research the influence of yard capacity needs to be considered in more detail and 

depth. 

The collaboration strategy has been initiated by Imai (2008) where the terminal (port) 

which has limited capacity can perform loading at other docks (ports). With the uncertainty 

of the arrival of the vessel, which leads to a situation where at the same time there is a surplus 

and devisit resources simultaneously. In this situation a resource allocation decision is needed 

that can benefit many parties. Based on the output from scenario 1-16 it can be concluded 

that collaboration scenario can decrease waiting time. Thus the collaboration will improve 

service level to shipping lines, reduce the cost of shipping lines and speed up delivery times. 

Port management becomes more efficient, resulting in increased customer satisfaction that 

can ultimately improve port competitiveness. 
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