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Abstract

Berth, quay crane and yard are the main resources of the pgfjthat determine the level
of service quality provided to shipping lines. In this paper, berth, quay crane and yard
allocations are considered simultaneously. Scenarios are made to determine the effect
of these factors. The scenario is based on the combination of each level of each factor.
Eaclfjcenario is simulated to measure the response assessed based on turnaround time.
The authors develop a simulation model to investigate the impact of berth, crane, and
yard allocation simultaneously. Simulation model was developed to see the impact of
simultancous allocation and collaborative strategy, especially the impact on waiting
and turnaround time. The authors develop 16 scenarios from a combination of berth,
quay crane, vard and strategy. Author uses two terminals in Jakarta, Indonesia, is the
Koja container terminal (TPK Koja) and Jakarta International Container Terminal
(JICT). The results show that simultaneous-collaborative allocation can reduce waiting
and ship turnaround time. Simultaneous-collaborative strategy reduces waiting time
and turnaround time significantly, improving service level to shipping lines.

Keywords: berth allocation problem, uncertain, collaboration.

1. Introduction

Container terminals play a vital role in serving as key nodes in the global
container transportation network where intermodal and [fitra-modal container
movements are conducted extensively (Jin, Lee, & Hua, 2015). Containeerminal is a
complex system involving multiple functional areas and operations. The operations in
a container terminal can be cla@ified into the three areas: seaside. yard and landside
(Bierwirth & Meisel, 2010)The quay-side area is directly open to container vessels and
is equipped with quay cranes for container loading onto and discharging from vessels,




while the yard-side area is mainly responsible for container temporary storage where
vard cranes and trucks are employed for container stacking and horizontal movement.
Various operations, arising at the quay-side area (e.g.. berth allocation and quay crane
scheduling) and yard-side area (e.g., storage allocation, yard crane scheduling, yard
truck scheduling). need to be well organized in order to guarantee the efficiency and
competitiveness of the container terminal.

Indicator of port performance one of which is determined based on the length of
the ship is in the port (ship turnaround time). Ship turnaround time is influenced by
dock allocation, quay crane allocation, and container yard allocation. These factors
influence each other, so that the discussion of berth allocation cannot stand alone and
involves all three of these factors.

The ship takes time to complete loading and unloading activities. The time is
affected by the number of quay cranes allocated to serve the vessel. Each crane has a
different level of productivity. Quay cranes take time to perform one cycle of operation.
Crane cycle time is the time required to reach the container on the ship, carrying and
putting the container on the truck. Truck cycle time is the time it takes the truck to
bring the container from the dock to the yard and back to the dock. Truck cycle times
are not only determined by distance, but also truck speed and productivity of RTG
cranes operating in container yards.

Thus, crane cycle times and truck cycle times must be in sync. If the truck cycle
time is greater than the quay crane cycle time, the quay crane must wait until the truck
is available. Thus crane performance is not optimal, it affects the overall loading and
unloading time.

The allocation of quay cranes also not only takes into account the quantity, but
also the position or location of the quay crane. In other words the allocation of quay
cranes is determined by where quay crane positions are available and whichever one
needs them. Imai 2008 explained that the allocation of QC cannot be done freely. Quay
cranes must move on one rail, so the sequence is always fixed and cannot cross each
other. As an illustration, the terminal has 3 berths and 8 quay cranes. Berth 1 and 2 are
servicing vessels, where berth 1 is allocated 4 quay cranes, berth 2 is allocated 2 quay
cranes. The loading-unloading time at dock 2 is longer than the dock 2. In the period t
there are two vessel coming and should be serviced. while berth 2 is in operation, while
berth 1 and 3 are available. Both vessel require 3 quay cranes each. Berth 1 available
for 4 quay cranes, and at berth 3 available for 2 quay cranes. In that condition, the quay
cranes located at terminal 1 cannot be allocated directly to berth 3. Allocation can be
done by shifting one quay crane from berth 2 to berth 3, and shifting one quay crane
from berth 1 to berth 2, and repositioning quay crane located on berth 2. This shift can
be done only if allowed for interrupt in terminal 2, if no interrupt is not allowed, then
the new shift can be implemented after operation in berth 2 is completed.

Berth, quay crane and container yard are equipment that require huge investment.
Therefore, these resources need to be operated efficiently. Inefficient operation can
lead to bottlenecks and congestion at the port, which in turn leads to increased waiting
times and turnaround time., as well as decreasing service level and port
competitiveness.




This paper will discugfks a simultaneous berth, quay crane and yard allocation
and collaborative strategy. This paper contributes significantly mainly to show the
impact of simultancous-collaborative berth, quay crane, and yard allocation. The rest
of this paper is organized as follows. Section 2 has a literature review. Section 3
presents the research methodology. Section 4 results and discussion, section 5 presents
discussion and future rescarch.

2. Literature Review a

Berth Allocation Problem (BAP) could be cither static or dynamic (Imai,
Nishimura, & Papadimitriou, 2001). The static BAP (SBAP) assumes all ships to have
already arrived at the port when the allocation process begins, whereas the dynamic
BAP (DBAP) considers not only ships that have already arrived but also those that will
arrive within the planning horizon. Depending on the spatial of the berth, BAP can be
classified into two types: discrete and continuous problems (Imai, Sun, Nishimura, &
Papadimitriou, 2005; Lalla-ruiz, Gonzalez-velarde, Melian-batista, & Moreno-vega,
2014). As to the discrete BAP, the quay is partitioff§d into a number of sections
(berths), where one ship could be handled at a time. A vessel cannot moor across a
berth boundary and multiple vessels cannot occupy the same berth at the same time.
Whereas in the continuous BAP, ships could be served wherever empty spaces are
available. Based on the scope of analysis, BAP can be grouped into two: (i) it only
discusses the allocation of the berth itself and (ii) it simultancously addresses allocation
of berth and other resources, such as quay cranes and yard. In the simultancous BAP
discussion, coverage can be between berth and quay cranes (berth and crane allocation
problem or between berth and yard (berth and yard allocation problem).

The studies focusing on BAP

Initially, the BAP was addressed by using First Come First Service (FCFS)
approach. Lai and Shih (1992) conducted a study with the FCFS approach and
proposed a heuristic algorithm to assign berths to calling containerships. Similarly Lai
and Shih (1992), Brown et al. (1994) also condudf8d research with the FCFS approach.
Observations were carried out in a naval port. An integer programming model was
proposed to find the optimal ship-to-berth assignments. They conclude that in order to
generate optimal allocation, the vessel is allowed to be shifted to another berth.
According to Imai et al. (2001), these conditions cannot be applied to the c@hmercial
port, because loading and unloading activities should be done until finish. Imai et al.
(1997) conducted a study on the commercial port where most of the allocation of ships
was using the FCFS approach. They formulate a static berth allocation problem as a
nonlinear integer program to minimize both the total time that the vessels spend at the
berth and the degree of dissatisfaction incurred by the berthing order. Based on their
research, it was concluded that to obtain optimum services, ways other than the first
come first service rule should be explored.

Imai et al. (2001) developed a static approach into a dynamic approach. They
formulate a Mixed Integer Programming model. The model is solved using Sub
Gradient Lagffihgian Relaxation method. However, the proposed solution is still
complicated. Imai et al. (2003) developed a model of nonlinear dynamic discrete BAP




by adding the priority of scale. The model is solved using Genetic Algorithm. Golias
et al. (2009) developed model of discrete and dynamic berth allocation problem and
was formulated as a multiobjective combinatorial optimization problem where vessel
service is differentiated upon priority agreem@ts. A genetic algorithms based heuristic
is developed to solve the resulting problem. Hansen et al. (2008) proposed a variable
neighborhood search with the aim to find a solution with minimum total cost that
includes the sub-costs of waiting, handling and earliness or tardiness of completion.
Xu et al. [32] proposed a heuristic to deal with the DBAP.

The studi@ifocusing on Simultaneous BAP and QCAP

The operations in a container terminal can be clssified into the three areas:
seaside, yard and landside (Bierwirth & Meisel, 2010) [30]. Among them, the seaside
operations are critical due to the use of berths and quay cranes, two scarce resources
with significant impacts on a container terminal |17]. In the container terminal seaside,
berth allocation problem, quay crane assignment problem and quay crane scheduling
problem are three essential seaside operations planning problems and they were often
solved@eparately (Liang, Huang. & Yang. 2009: Raa, Dullaert, & Schaeren,
2011)[18,26,34]. A separate study, however, was found likely to result in poor overall
system performance due the neglect on their interrelationships. Thus, seaside
operations planning problems have been suggested to be solved in an integrated way
(Bierwirthg Meisel. 2010).

The amount of res@rches on simultaneous berth and QC scheduling problem is
relatively small. Park & Kim (2003) first proposed aFheduling method for berth and
quay cranes under continuous berth situation. They formulate the MIP model, and a
two phased solution procedure was adopted. In first phase berth allocation and rough
quay crane allocation was determined, then in second phase detailed crane scheduling
was generated considering minimal setups times. Meisel & Bierwirth (Z09)
investigated a similar problem with the first phase problem in Park & Kim (2003). They
applied two metaheuristics, Squeaky Wheel Optimization and Tabu Search,
respectively to alter the vessel priority list. and proposed @heuristic for searching better
solutions under a given priority list. Their model allow quay cranes can be moved to
other vessel before its current vessel finishes processing. Imai et al. (2008) developed
a model of simultancous berth and crane allocation problem with the aim to minimize
the total time (waiting and handling time). They form@fjtc the model as an integer
modeling and was solved using Genetic Algorithm. Peng-fei and Hai-gui (2008)
developed a dynamic simultancous Effth and crane allocation problem with
mathematical models, where time of arrival of the vessel and handling time is
stochastic. The goalf3 to minimize the average waiting time. The model is solved using
Genetic Algorithm. Zhang et al. (2010) considered the coverage ranges for quay cranes
when addressing the simultancous berth and quay crane scheduling problem under
continuous berth situation, and applied a sub-gradient optimization algorithm based on
Lagrangian relaxation to search for near-optimal solutions. They solved by a
polynomial-time enumeration procedure. Han et al. (2010) developed a model of mixed
integer programming in a similar case by adding the priority scale. In this model quay
cranes are allowed to move when another dock is performing a loading-unloading




operation. Sctup time of the crane, as a consequence of quay crane reallocation, is
considered in the model. The model is solved using Genetic Algorithm. According to
Hsu (2016) almost all these GAs can only support time-invariant QC assignment in
which the number of QCs assigned to a ship is unchanged. Hsu (2016)
mengembangkan model simultancous berth dan quay crane allocation dengan
penyelesaian menggunakan metode hybrid particle swarm optimization (HE$O).
combining an improved PSO with an event-based heuristic. Liang et al. (2009)
addressed the dynamic berth allocation process., considering a number of factors,
including arrival time. berth location and number of quay cranes. The objective of the
problem was to minimize the sum of the handling time, waiting time and the delay time
for every ship. A hybrid evolutionary algorithm was proposed to find an approximate
solution for the problem. The proposed algorithm was compared to the existing
methods and the computational experiments showed that the proposed approaches were
more applicable to solve dynamic BAP. Meanwhile, Golias et al. (2014) developed a
model by-objective optimization and the model was solved using a heuristic algorithm.
Models with constraint non-crossing of quay cranes is developed by Zhihong and Na
(2011). solved using Genetic Algorithm. Meanwhile, Liang et al. (2011) developed a
model of multi-objective quay crane dynamic allocation problem and berth allocation
problem, solved using Hybrid Genetic AlgorithmfJhang et al. (2010) discusses the
simultaneous dynamic discrete BAP-QCAP using Hybrid Parallel Genetic Algorithm
approach (a combination of parallel genetic algorithm with a heuristic algorithm). Raa
ctal. (2011) developed a model of Mixed Integer Linear Programming by priorities of
scale, resolved using Hybrid Heuristic solution procedure.

Giallombardo et al. (2010) developed a model that integrates at the tactical level
two decision problems arising in container terminals: the berth allocation problem,
which consists of assigning and scheduling incoming ships to berthing positions, and
the quay crane assignment problem, which assigns to incoming ships a certain quay
crane profile (i.e. number of quay cranes per working shift). They present two
formulations: a mixed integer quadratic program and a linearization which reduces to
a mixed integer linear program. The objective function aims. on the one hand. to
maximize the total value of chosen quay crane profiles and, on the other hand, to
minimize the houseckeeping costs generated by transshipment flows between ships.
They solve the problem using heuristic algorithm which combines tabu search methods
and mathematical programming techniques.

Han et al (2010) mengembangkan model simultan BAP-QCAP def@an
mempertimbangkan sifat stokastik pada kedatangan kapal dan waktu handling. QCs
are allowed to move to other berths before finishing processing on cg3rently assigned
vessels. The model is solved using genetic algorithm approach. A mixed integer
programming model is proposed, and a simulation based Genetic Algorithm (GA)
search procedure is applied to generate robust berth and QC schedule proactively.

The studies focusing onfBAP and Yard

Berth and cran@allocation problem generally aims to minimize the vessels’
turnaround time (e.g.. Imai et al. 2001: Kim & Moon 2003: Guan & Cheun@2004:
Cordeau et al. 2005; Wang & Lim 2007), the berth and yard problem generally focuses




more on the resource utilization efficiency and container movement (movement
betwe@) berth and storage yard). Berth and yard allocation heavily depend on each
other. Zhen et al. (2011) developed an integrated model that considers simultaneously
the two decision problems with the gl of generating a berth template and a yard
template that fit well with each other. Berth template problems are solved first whose
results are used as the input of the yard template problem. The result is refined by uhg
an iterative process which is repeated until no improvement is found. The model aim
of minifflizing the service cost and operation cost.

Hendriks et al. (2013) addressed the integrated berth and yard planning problem
by means of an alternating berth and yard planning heuristic approach. They consider
as simultancous berth and yard planning problem with the goal of determining the
minimy@h distance of container shifting from berth to yard and vice versa.

Li and Yip (2013) consider the joint planning for yard storage and berth
template in export terminals, Scattered stacking which belongs to cluster strategy is
adopted to store clusters in a scattered way. In their work, the berthing positions and
the amount of containers in each cluster are first obtained and the exact locations of
containers are then derived.

Lee & Jin (2013) developed a simultancous model of berth and yard for
transshipment process with the goal of minimizing the cost of container@hovement.
The problem is formulated as a mixed integer programming model and solved by a
memetic heuristic approach. Jin et al. (2015) reformulate the problem in Lee & Jin
(2013) as a set covering model and sol gt by a column generation approach.

Tao & Lee (2015) addressed a joint planning problem for berth and yard
allocation in transshipment terminals. They proposed multi-cluster stacking strategy to
split each transshipment flow into a number of container clusters and then stack each
cluster in different yard blocks. A mixed integer quadratic programming model is
formulated to minimize the total distance of exchanging containers between mother
vessels and feeders.

Robenek et al. (2014) Robenek et al. (2014) condi}ted a simultancous study of
berth and yard by taking problems in bulk terminals. The difference between bulk port
and other container terminals is the cargo types on the vessels in a bulk port are various
and thus a wide variety of specialized equipment is needed to handle such cargos. An
exact algorithm is designed to solve the integrated problem where the master problem
is modeled as a set-partition problem and sub problems are solved using mixed integer

programming.

3. Research Methodology

We use simulation as research methodology. Simulation is used as an approach
to modeling complex systems so that it is difficult to use an analytical model or when
the system contains stochastic and uncertain variables (Pujawan et al., 2015). Berth
allocation is an NP-hard problem, so the optimal solution is difficult to solve by
analytical methods, especially for large entities (Homayouni, Tang, & Motlagh, 2014).
Operational activities at ports involving one or more container terminals, which involve
the regulation of multiple resources such as quay cranes, rubber tyred gantry, and
internal transporters, are categorized as highly complex problems (Abadi. Baphana, &




Ioannou, 2009; Kamrani, Mohsen, Esmacil, & Golroudbary, 2014; Kia, Shayan, &
Ghotb, 2002; Kotachi, Rabadi, & Obeid, 2013).

Simulation methods have been used by some researchers, including models for
planning and management systems in ports (Tahar & Hussain, 2013), imitating port
operations and estimating performance and outcomes through several scenarios
(Kotachi et al., 2013). Kotachi et al. (2013) used a simulation method to analyze multi
modal operations at the port. Zeng & Yang (2009) uses a method of integration between
simulations with optimization methods to determine loading and discharging schedules
in container terminals. Kulak et al. (2013) uses a simulation method to determine
strategies to improve long-term container terminal performance by identifying
bottlenecks as the cause of inefficient processes. identifying terminal configuration
changes in resource allocation, and implementing appropriate strategies to overcome
bottlenecks. Tahar & Hussain (2013) conducted a simulation to determine the berthing
schedule at Kelang Terminal Container (KTC) with first come first service approach
with two priority scenarios based on ship type (mainline, feeder, coastal, ro-ro) and
container number.

| Model Development

‘ Observing process. collecting data. modeling the process

¥

Verification & Validation

Werification of simulation logics and testing the resultd to ensure validitv

¥

Experiments Develonment

Design experiments with fractional desien. run experiment with 5 replication

¥

Analvsis of Results

Analysis of Waiting & Tumaround Time

Figure 1. Research Step

Park & Dragovic (2009) used a simulation method to analyze queue and
bottleneck problems, container handling, internal transporter, ship schedule, container
vard utilization, and port throughput. Kia et al. (2002) used a simulation method to
compare the container yard location in the existing port area with a container yard
outside the harbor arca. Abadi et al. (2009) used a simulation method to determine the
effect of ship turnaround and transportation costs due to truck inspection before
entering the port. Pujawan et al. (2015) uses a simulation method to integrate delivery
planning and silo capacity determination where demand is uncertain. Some researchers




use a combination of simulations with analytical methods. Arango et al. (2011)
integrate between Genetic Algorithm with simulation (ARENA). Ilati &
Sheikleslami (2014) used a simulation method combined with meta-heuristic.

We adapted the standar simulation methodology in tH§ study (Altiok &
Melamed, 2007; Kelton, Sawdoski, & Sawdoski, 2010). Figure 1 shows the four major
steps where each will be explained in the following sections. The first is developing
the simulation model that started with the observation of real system, understanding
the process, and collecting data for input parameters. In any simulation study, it is
necessary to ensure that the model reflects the real system and the simulation logics
works properly (Kleijnen, 1995; Sargent, 2013). Our second step, therefore, was
verification and validation of the simulation model. The third step was running the
experiments following the full factorial design with five replications for each treatment.
Full factorial is a type of experimental design where all combination of factors are
considered (Montgomery, 1997). The experimental results were @ed to evaluate which
factors that have significant ifipacts on response (waiting time) by the use of analysis
of variance (ANOVA). The details of each step will be elaborated in the following
sections.

4. Result
Scenario Using Full Factorial Design

In the previous study, berth, quay crane and yard were discussed separately, or
discussed by combining one of the factors, eg berth and crane or dock and yard. In this
paper, berth, quay crane and yard are considered simultaneously. In this study also
added strategic factors.

To see the effect of each factor on the waiting time created a combination of
each level of every factor. Table 1 shows four factors where each factor consists of two
levels ie low (-1) and high (1). Berth and crane are the factors most often considered in
developing the model. among which are done by Y. M. Park & Kim, 2003, Imai, 2008,
Peng-fei & Hai-gui, 2008 dan Liang et al., 2009. Zhen et al., (2011), Li & Yip (2013).
Lee & Jin (2013) developed the model by considering the relationship between berth
and vard.

Table 1. Factors and level

Factors MNumber of Level Level
Service Order (SO) 2 -1: FCFS
1: Priority
Berth-Yard (B) 2 -1: Flexible
l: Fixed
Crane (C) 2 -1: Fixed
1: Flexible
Strategy (S) 2 -1: Non Collaboration

1: Collaboration

By using full factorial design, it produces a combinationof 2 x2x2x2or 16
scenarios. The combination or scenario generated from the four factors can be seen in
Table 2. The first combination is a combination of service_order at low level (-1): firs
come firs service (FCFS): berth-yard at low level (-1): flexible; crane at low level (-1):
fixed and low level strategy (-1): non-collaboration. The first scenario is the current




condition (existing condition). The indicator used to measure the response is the
waiting time of the ship. Each scenario is simulated using ARENA software with length
of replication for one year (365 days) and each combination runs in 5 replications.

Table 2. Scenario
Scenario SO B C S
-1 -1 -1 -1
-1 -1 -1 1
-1 -1 1 -1
-1 -1 1 1

=B R R T S
'
—
—_—
]
—
'
—

9 1
10 1
11 1
12 1
13 1 1 -1 -1
14 1
15 1
16 1

Testing Factor Influence Using Anova

The output of the simulation (response) is the waiting time of the ship. The
response of the simulation results was processed using the minitab 17 shown in Table
3. The result of the analysis resulted two factors showed significant effect on the
waiting time, while the other two factors had no significant effect.

The p-value value of the crane is 0.000, using o of 0.03, it can be said that there
is significant influence on how to allocate crane (fixed crane allocation and crane
allocation with flexibility) to ship waiting time. The p-value value for the strategy
factor is 0.000 and it can be said that the difference in strategy implementation
(collaboration and non-collaboration) significantly affects the waiting time of the
vessel. The service order factor has a p-value of 0.390 (p-value> nlai a. = 0.05) so it
can be said that the servie order of ship has no significant effect to waiting time.
Berth_yard factor has a p-value value of 0.184. Thus it can be said that there is no
significant influence (berth_vard allocation with flexible or fixed system) to ship
waiting time. The p-value of interaction of two factor (crane and strategy) is 0,000,
which means that the interaction between the two factors significantly affects the
waiting time of the vessel.

Although individual service_order factors have no significant effect on total
waiting time, interaction between service_order and crane allocation has significant
influence (p-value of 0.022). The p-value of two-factor interaction between
service_order and strategy is 0.072. This value is slightly higher than value of o 0 0.05.
Using a value of 0.05 consistently can be concluded that the interaction between these
two factors did not give significant influence to the waiting time. The interaction
between service_order and berth vyard, berth vyard and crane, berth_yard and strategy




has p-value values of 0.217, 0.284, and 0.972, respectively. These values indicate that
there is no interaction between the two factors.

Table 3. Anova for the analysis of the waiting time of the ship

The p-value of three-factor interaction between berth_yard, crane and strategy
is 0.010. It can be concluded that the interaction between these three factors
significantly influence the waiting time of the vessel. The interaction of three factors
between service_order, berth_yard and crane resulted in a p-value of 0,937, The
interaction of three factors between service_order, berth_yard and strategy has a p-
value of 0.956. The interaction of three factors between service_order, crane and
strategy resulted in a p-v@e of 0.742. Thus it can be concluded that the interaction
between the three factors does not give a significant effect on the waiting time of the
ship. The interaction of four factors between service_order, berth_yaff). crane and
strategy has a p-value of 0.122. Thus, the interaction of these four factors does not have
a significant effect on the waiting time of the vessel. The R-square value for the wait
time response is 89.82% which means that the changes occurring at the 89.82% waiting
time can be explained from the system.

Scenario analysis for waiting time

The analysis is based on the performance of the waiting time of each scenario.
Table 4 shows the wait time of 5 replications of each scenario. Scenario 1 on replication
1 resulted in a waiting time of 173.23 hours, in replication 2 resulting in a waiting time
of 260,97 hours, with an average waiting time of 192.50 hours. Scenario 2 on
replication 1 produces a wait time of 44.18 hours, on replication 2 resulting in a wait
time of 25.42 hours, with an average waiting time of 47.03 hours, and so on.




Table 4. Analysis of results based on ship's waiting time

Waiting Time (hours) R
Replication | Replication 2 Replication 3 Replication 4 Replication 5 N
Scenario-1 173.23 26097 16480 178.15 185.35 192.50
Scenario -2 44,18 2542 102,97 30.89 31.67 47.03
Scenario -3 666.03 47142 471.71 408.31 463.81 496.26
Seenario <4 139.53 86.89 118.90 134 36 132.20 122.37
Scenario -3 140.24 146.64 161.53 186.15 154.31 157.77
Scenario -6 2271 4531 52.07 3492 59.34 42.87
Scenario -7 719.69 520.76 457.22 43238 503.67 530.75
Scenario -8 120.09 96.57 119.53 118.80 148.43 120.68
Scenario -9 174.09 173.71 171.30 274.52 065.23 291.77
Scenario -10 2545 4047 25.01 32.16 24.36 29.49
Seenario -11 476.41 430.02 483 .51 436.18 508.35 466.89
Scenario =12 95.01 97.67 78.34 8206 114.33 93 .48
Scenario -13 223.27 133.15 18941 159.43 149.24 170.90
Seenario -14 34.68 4426 30.02 46.55 41.95 39.49
Scenario -13 56143 468.60 556.82 455.49 493.47 507.16
Scenario -16 19.36 16.16 19.20 15.71 17.02 17.49

Scenario 1 is a combination of service order: fisrt come first service:
berth_yard: flexible; crane: fixed: strategy: non collaboration resulted in an average
waiting time of 192,50 hours. Scenario 2 is a combination of service_order: fisrt cone
first service: berth_vyard: flexible: crane: fixed: strategy: collaboration resulted in
average waiting time of 47.03 hours. The average waiting time decreased from 192.50
hours to 47.03 hours. In the first replication there was a decrease of 129.05 hours, the
second replication was reduced by 135.55 hours, and so on. The average decrease of
waiting time from scenario 1 to scenario 5 is 145.47 hours.

This result is consistent with anova analysis showing that a non-collaboration
strategy change to collaboration will result in a reduction of approximately 351.4 hours.
The interaction of two factors between berth_yard and strategy and between crane and
strategy resulted in significant effect on ship waiting time. The interaction of three
factors between berth vard, cranc and strategy showed significant effect on ship
waiting time. Thus the decrease of waiting time of 143.47 hours caused by the main
influence of the strategy factor and the influence of interaction between two factors and
interaction of three factors.

Scenario 3 is a combination of service_order: fisrt cone first service;
berth_yard: flexible; crane: flexible; strategy: non collaboration resulted in average
waiting time of 496.26 hours. Based on anova analysis, crane allocation significantly
influences waiting time. The interaction of two fgjtors between service_order and
crane and between cranes and strategy resulted in a significant effect on thejaiting
time. The interaction of three factors between berth vard, crane and strategy also has
significant effect on waiting time. Changes in the crane allocation system, the
interaction of the two factors and the interaction of the three factors led to an increase
in average waiting time of 303,76 hours or from 192.50 hours to 496.26 hours.

Scenario 4 is a combination of service order: fisrt cone first service:
berth_yard: flexible: crane: flexible: strategy: collaboration resulted in average waiting




time of 122.37 hours or a decrease of waiting time of 70.13 hours compared with
scenario 1. The main influence of crane factor and factor strategy and the influence of
two factor interaction between service_order and crane and crane and strategy, and the
effect of interaction three factors between berth yard, crane and strategy cause the
waiting time to decrease by 70.13 hours.

Table 5. Comparison of waiting times and existing conditions

Waiting Time (hours) Average
Scenano Replication | Replication 2 Replication 3 Replication 4 Replication 5 i
Scenario -1 0.00 0.00 0.00 0.00 0.00 0.00
Scenario-2 -129.05 -235.55 -61.83 -147.26 -153.67 =145.47
Scenario-3 492.80 21045 30691 230.16 27846 303.76
Scenario-4 -33.70 -174.08 -45.90 -43.80 -53.15 -70.13
Scenario-5 -32.99 -114.33 -3.28 8.00 -31.04 -34.73
Scenario-6 -150.51 -215.66 -112.74 -14323 -126.01 -149.63
Scenario-7 546.47 259.79 29242 274.22 31833 338.25
Scenario-8 -53.14 -164.39 -45.27 -39.35 -36.92 -71.82
Scenario-9 0.86 -87.26 6.50 96.37 479 88 99.27
Scenario-10 -147.78 -220.50 -139.80 -14599 -160.99 -163.01
Scenario-11 303.18 169.05 318.70 258.03 323.00 274 .39
Scenario-12 -78.22 -163.30 -86.47 96,09 -71.02 99.02
Scenario-13 50.04 -127.82 24.61 -18.72 -36.10 -21.60
Scenario-14 -138.55 -216.71 -134.78 -13161 -143.40 -153.01
Scenario-15 388.20 207.63 392.02 27734 308.12 314.66
Scenario-16 -153.87 -244.81 -145.60 -162.44 -168.33 -175.01

Scenario 5 is a combination of service order: fisrt cone first service:
berth_yard: fixed: crane: fixed: strategy: non collaboration resulted in an average
waiting time of 157.77 hours. Compared to scenario 1 changes occur on berth vard
all@ations from flexible to fixed. In the anova table. changes in the allocation system
do not have a significant effect on the total waiting time. Significant influence occurred
in the interaction of three factors, namely berth_vard. crane and strategy. Decreased
average waiting time of 34.73 hours apparantely due to the influence of the interaction
between the three factors.

Scenario 6 is a combination of service_order: fisrt cone first service;
berth_yard: fixed: crane: fixed; strategy: collaboration produces an average waiting
time of 42.87 hrs. Compared to scenario 1 changes occur in berth_yard allocation,
crane allocation from flexible to fixed, and strategy change from non collaboration to
collaboration. It is clear here that there is a significant influence of the main factors of
crane allocation and strategy change. There are significant interactions affecting the
waiting time, ie the interaction of two factors and the interaction of three factors. The
effect of two factor interaction between service order and crane and between crane and
strategy. The effect of interaction between three factors occurs between berth yard,
crane and strategy. The total effect of scenario 6 resulted in a decreasing wait time of
149.63 hours.

Scenario 7 is a combination of service order: fisrt cone first service:
berth_yard: fixed: crane: flexible: strategy: non collaboration. Compared to scenario 1,
changes occur on two factors, namely berth_yard with fixed allocation system and
crane allocation system with flexible system. Based on the anova table of berth_yard
allocation does not give significant effect to ship waiting time, on the contrary the crane




allocation gives significant effect to the waiting time. There are two influences of two
factor interactions: service order and crane and crane @§d strategy. The interaction of
three factors between berth_yard, crane and strategy also has a significant effect on
waiting time. Total interactions resulted in a wait time change of 530.75 hours, from
the previous waiting time of 192.50 or an increase of waiting time to an average of
338.25.

Scenario 8 is a combination of service order: fisrt cone first service;
berth_yard: fixed:; crane: flexible; strategy: collaboration. Compared to scenario 1,
there are three factors th@change ic berth_yard, crane and strategy. Based on the anova
table, the main factors have a significant effect on the waiting time, ic cranes and
strategy. The interaction of two factors namely service_order and crane and craf§ and
strategy and interaction of three factors between berth_yard, crane and strategy have a
significant effect on waiting time. The overall factor influence resulted in decreasing
waiting time from 192.50 to 120.68 or an average decrease of 71.82 hours.

Scenario 9-16 is a development of scenario 1-8. In each scenario 1-8 there is a
one factor change that is service order. There is no significant influence of the main
factors. Significant influence occurs only in the interaction of two factors between
service order and crane. Thus the total effect that occurs between scenarios 1-8 and 9-
16 is almost similar.

Based on the results of the waiting time analysis of scenario | to scenario 16 on
four factors shows that the main influence of crane and strategy. the influence of two-
factor interaction (service_order and crane, crane and strategy), and the influence of
three-factor interaction (berth_vyard, crane and strategy) shown in Table 4 and Table 5
are consistent with the anova table shown in Table 3.

Determine the best scenario

Each scenario produces different responses on each ship. There is no more
dominant scenario than any other scenario. The selection of best scenarios is done
gradually. First determine the best scenarios on each ship for each response. The second
stage determines the best scenario in aggregate. The best scenario scenario in aggregate
is done in two ways, ie determining the highest frequency of each vessel and using the
overall average value. Each scenario is compared to scenario 1 which is the existing
condition.

Table 6 shows the average waiting time of each scenario, while Table 7 shows
the comparative results of each scenario with scenario 1. The best scenario for ship 1
is scenario 10 with average waiting time of 33.33 hours or there is a decrease in waiting
time equal to 501.36 hours compared with scenario 1. The best scenario for ship 2 is
scenario 10 with waiting time of 33.81 hours. In scenario 10 there is a decrease in
waiting time of 430.88 hours compared with scenario 1. From table 7 can be seen that
scenario 10 produces the highest frequency. Thus for the wait time response, the best
scenario is scenario 10.
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Turnaround time (comparisons based on best scenarios)

Table 8 shows turnaround time for collaboration and non-collaboration strategies.
The vessel 1-10 decreased a very significant ship turnaround time of 343.98 hours, while the
11-29 ships decreased by 25.87 hours. Overall turnaround time decreased by an average of
135.56 hours.

Table 8. Turnaround Time

Turnaround Time

Vessel Non Collaboration  Collaboration | Vessel Non Collaboration  Collaboration

Kl 2490.85 2075.75 K16 2090.21 2076.59
K2 1871.35 1552.12 K17 1181.82 1189.260
K3 1607.18 1191.86 K18 1664.20 1529.13
K4 1470.86 894.53 K19 465.07 47478
K5 179248 1458.62 K20 922.61 950.07
K6 1391.33 1004.28 K21 1559.54 1549.66
K7 996.89 616.68 K22 1672.50 1634.35
K8 1309.29 1098.96 K23 2854.79 2542.70
K9 1676.79 1353.78 K24 1337.92 1364.63
K10 2462.26 2382.92 K25 1717.28 1768.29
K11 1604 46 1654.34 K26 587.78 608.56
K12 2396.90 2242.70 K27 784.38 771.79
K13 2187.67 2168.77 K28 131747 1260.05
K14 1170.95 1082.39 K29 1000.56 1044.99
K15 1748.19 1859.69

5. Discussion and Future Research

Based on the waiting time response, it shows that scenario 10 is the best scenario.
Scenario 10 is a combination where service order is a priority; berth yard allocations are
flexible: crane allocation is fixed: strategy used is collaboration strategy. Anova analysis
shows that crane allocation and strategy selection have significant individual influence on
both response both waiting time and number of waiting vessels. These results reinforce
previous research that crane allocation is highly influential on ship waiting time (Han et al.,
2010; Liang et al., 2009). Quay cranes are a resource that has significant influence on
container terminals (Han et al., 2010; Liang et al., 2009).

The study also confirmed that flexible crane allocations should consider the time for
the displacement process so as not to interfere with other cranes that are engaged in loading
and unloading activities and propose to use break time to move and consider the time set up
of crane displacement (Han ct al. 2010). If the break time period is not the same,
recalculation is required to recalculate the number of cranes required, especially if the arrival
of the vessel does not always occur at the beginning of the working period.

For pairwise comparisons between non-collaboration strategies (scenarios with odd
numbers) and collaboration strategies (even-numbered scenarios) then collaboration
strategies always deliver better results for both responses. Scenario 2 produces less averages
waiting time than scenario 1, scenario 4 produces less averages waiting time than scenario 3,
scenario 6 produces less averages waiting time compared to scenario 5, and so on.
Comparison of the complete waiting time response can be seen in table 8.
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Table 9. Comparison of non collaboration and collaboration

Non Collaboration collaboration
Scenario Waiting Time Waiting Time Scenario
Scenario 1 193.03 47.03 Scenario 2
Scenano 3 496.26 120.08 Scenario 4
Scenario 5 157.77 42.87 Scenario 6
Scenario 7 530.75 120.68 Scenario 8
Scenario 9 291.77 29.49 Scenario 10
Scenario 11 466.89 93.48 Scenario 12
Scenario 13 170.90 39.49 Scenario 14
Scenario 15 507.16 146.93 Scenario 16

When comparing simultaneous allocations of berth, yard, and crane, scenarios 3, 7, 9,
11 and 15 produce a larger average waiting time compared to scenario 1. These results are
thought to derive from factor and interaction effects between factors such as discussed in
sub-section 5.4. In this study, the order of service by using priority is only effective for
collaborative strategies. For non-collaboration strategies service priority has no significant
effect. In subsequent research it is necessary to consider searching for the order of service
with priority systems (M. M. Golias, Boile, & Theofanis, 2010; Han et al., 2010).

Berth_yard no significant impact, both individually and interactions between factors.
However, this result can fit up the rescarch conducted by Lee & Jin, (2013), M. P. M.
Hendriks et al., (2013) dan Tao & Lee, (2015). Their research is basically aimed at
determining minimum transporter movement. The purpose of this study is slightly different
from the research they do, that is more to determine the effect of berth_yard allocation to the
waiting time.

Berth-yard has a significant influence when interacting with two other factors such as
cranes and strategy or service order and strategy. This is presumably because the distance
from the JICT and Koja terminals is relatively short and the speed of the head truck in this
model is considered constant.

Another factor is the dwelling time in both terminals which is assumed to be ideal and
definite. In this model, if the container yard (inbound and outbound) cannot accommodate
the container, the container will be sent to the temporary yard (buffer) to ensure that the
conainer yvard can hold all containers entering the terminal. In a real system, the actual yard
buffer has been applied by put container out of place. For inbound containers, buffer yards
typically use temporary yard (TPS) commonly used for overbrengen containers. In
subsequent research the influence of yard capacity needs to be considered in more detail and
depth.

The collaboration strategy has been initiated by Imai (2008) where the terminal (port)
which has limited capacity can perform loading at other docks (ports). With the uncertainty
of the arrival of the vessel, which leads to a situation where at the same time there is a surplus
and devisit resources simultancously. In this situation a resource allocation decision is needed
that can benefit many parties. Based on the output from scenario 1-16 it can be concluded
that collaboration scenario can decrease waiting time. Thus the collaboration will improve
service level to shipping lines, reduce the cost of shipping lines and speed up delivery times.
Port management becomes more efficient, resulting in increased customer satisfaction that
can ultimately improve port competitiveness.
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