REDUCED-REFERENCE HIGH DYNAMIC RANGE IMAGE QUALITY ASSESSMENT BASED ON MULTI EXPOSURE FUSION ALGORITHM

UNDERGRADUATE THESIS

OCARINA CLORAMIDINA 1152001008

INFORMATICS STUDY PROGRAM FACULTY OF ENGINEERING AND COMPUTER SCIENCE BAKRIE UNIVERSITY JAKARTA 2019

REDUCED-REFERENCE HIGH DYNAMIC RANGE IMAGE QUALITY ASSESSMENT BASED ON MULTI EXPOSURE FUSION ALGORITHM

UNDERGRADUATE THESIS Submitted as one of requirements to obtain bachelor degree (S1)

OCARINA CLORAMIDINA 1152001008

INFORMATICS STUDY PROGRAM FACULTY OF ENGINEERING AND COMPUTER SCIENCE BAKRIE UNIVERSITY JAKARTA 2019

STATEMENT OF ORIGINALITY

The material in this Undergraduate Thesis is the result of my own work, and all sources are quoted and cited properly.

Name NIM Signature : Ocarina Cloramidina : 1152001008 :

Clakamier_

Date

: August 21st, 2019

i

STATEMENT OF APPROVAL

This Research	Thesis is prepared and submitted by:
Name	: Ocarina Cloramidina
NIM	: 1152001008
Departement	: Informatics
Faculty	: Engineering and Computer Science
Title	: Reduced-Reference High Dynamic Range Image Quality
	Assessment Based on Multi Exposure Fusion Algorithm

has been approved by the Board of Examiners and accepted as a partial fulfilment of the requirements to obtain a Bachelor degree in Informatics Department, Faculty of Engineering and Computer Science, Bakrie University.

BOARD OF EXAMINERS

Supervisor

: Irwan Prasetya Gunawan, S.T, M.Eng, Ph.D

Examiner I

: Yusuf Lestanto, ST., M.Sc.

Africe 28/15 Matrice 28/15

Examiner II

: Dr. Siti Rohajawati, S.Kom., M.Kom

Authorized in : Jakarta : August 21st, 2019 Date

ACKNOWLEDGEMENT

The greatest thankfulness and praises are conveyed to Allah SWT for all the endless blessing and mercy that I could finally finish this undergraduate thesis with the title of "Reduced-Reference High Dynamic Range Image Quality Assessment Based on Multi Exposure Fusion Algorithm". This final project is proposed as part of the criteria for obtaining a Bachelor's degree in the Department of Informatics, Faculty of Engineering and Computer Science, University of Bakrie.

During this research there have been many people who have guided, helped and inspired me. Therefore, I also would like to express my sincere gratitude and appreciation to the following individuals:

- My special gratitude is also dedicated to my beloved parents, Mr. Wahyu Wibowo and Mrs. Rita Aryani for their unconditional love, the neverending-prayers, co-operation, patience, understanding, and encouragement which were the sustaining factors in carrying out the work successfully;
- My supervisor, Irwan Prasetya Gunawan, ST, MEng, PhD for the invaluable advice, positive encouragement, and everlasting patience he has provided me throughout the preparation of this thesis;
- My first examiner, Yusuf Lestanto, ST., M.Sc. as a Final Project examiner who always provides motivation, advice and improvements to the writing and preparation of the Final Project;
- My second examiner, Dr. Siti Rohajawati, S.Kom., M.Kom who is also a Final Project examiner who always gives directions, suggestions and improvements on the writing and preparation of the Final Project;
- 5. My extended family who always gives encouragement and prayers;
- 6. My one and only annoying sisters, Feline Cloramidine. I love you anyways;
- My partner as always, Salmaa Badriatu Syafa'ah who is always patient and very helpful in working on my thesis;
- 8. Ali Ansyorul Haq for his constant encouragement throughout my research period;

- Ajeng Rofifa, Prima Dona Khairul, Alhamsya B. Dyasta, and My friends in informatics 2015 for their kind help and co-operation throughout my study period;
- Seniors of Informatics, Bakrie University, 2012, 2013, and 2014 who have shared many experiences, provided motivation, assistance, prayer and enthusiasm during the preparation of the Final Project;
- All senators in 2017 and 2018 always support and give happiness to me during the time of my thesis;
- 12. My supervisor and I also say many thanks to the Indonesian Ministry Research and Higher Education under contract No. 11/AKM/PNT/2019, and Bakrie University, Indonesia, based on contract No.086/SPK/LPP-UB/III/2019 and No. 141/SPK/LPP-UB/III/2019 for partial support for the research presented in this undergraduate thesis.

Finally, I truly hope that this Undergraduate Thesis can be used as reference in the future and brings benefit to the other parties who need.

Jakarta, August 21st, 2019 Author

Ph Ramena.

Ocarina Cloramidina

DECLARATION OF PARTIAL COPYRIGHT LICENSE

As student of Bakrie University, I hereby: Name : Ocarina Cloramidina NIM : 1152001008 Departement : Informatics

The author, whose copyright is declared on the title page of this work, agree and grant Bakrie University a non-exclusive royalty free right for educational and academic endeavour with this Undergraduate Thesis titled:

REDUCED-REFERENCE HIGH DYNAMIC RANGE IMAGE QUALITY ASSESSMENT BASED ON MULTI EXPOSURE FUSION ALGORITHM

With the granted permission to use this material, Bakrie University is allowed to keep or make digital copy, communicate, and publish this Undergraduate Thesis by providing full acknowledgement of the copyright and the source of the material.

It is understood that copying and publicizing of this work for financial gain shall not be allowed without written permission. The original Partial Copyright License attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Bakrie University Archive.

> Authorized in : Jakarta Date : August 21st, 2019 Approved by

Ja Raminime

(Ocarina Cloramidina)

REDUCED-REFERENCE HIGH DYNAMIC RANGE IMAGE QUALITY ASSESSMENT BASED ON MULTI EXPOSURE FUSION ALGORITHM

Ocarina Cloramidina¹

ABSTRACT

This thesis presents objective image quality measurements for High Dynamic Range (HDR) images without complete reference information based on the Multi Exposure Fusion (MEF) Algorithm. It focuses on developing HDR Reduced-Reference (RR) image quality models, and especially on investigating overhead data that can improve the predictive ability of the model. Overhead data used previously have been processed by the MEF algorithm as a basis for this research. In addition, variations and combinations of edge strength and lighting features are extracted from the original image and its quality is measured by a complete reference model modified for the RR model for HDR images. Some of them aim to find out whether the complete reference matrix can be modified for the reduced reference model. These features are then combined to get a single value, which corresponds to the predicted subjective score. This method will be evaluated using variations in Quality Evaluation 1 (QE1), Quality Evaluation 2 (QE2), and Quality Evaluation 3 (QE3). The results show that the proposed average edge strength feature extraction method and the average luminance feature are the best methods where QE3 is close to 1.

Keywords : Image Quality Assessment (IQA), Objective Quality Assessment, High Dynamic Range (HDR), Reduce-Reference (RR), Multi Exposure Fusion (MEF).

¹Undergraduate Student of Informatics Study Program, Bakrie University

Contents

Sta	Statement of Originality i			
Sta	Statement of Approval ii			
Ac	know	iii		
Co	pyrig	ht Lisence v		
Ab	ostrac	t vi		
Ta	ble of	^c Contents vii		
Lis	st of I	Tigures x		
Lis	st of]	Tables xiii		
Lis	List of Abbreviations xiv			
I	Intro	oduction 1		
	1.1	Background		
	1.2	Problems Statement		
	1.3	Purpose of Research		
	1.4	Scope of Research		
	1.5	Benefit of Research		
	1.6	Publications		
	1.7	Outline of Thesis		
	1.8	Summary 6		
II	Lite	rature Review 7		
	2.1	Literature Review		
	2.2	High Dynamic Range (HDR)		
	2.3	HDR Imaging Pipeline		
	2.4	Multi Exposure Frame (MEF) 15		
		2.4.1 Fusion		
	2.5	Image Quality Assessment (IQA) Methods		

	2.5.1	Subjective Methods	19
	2.5.2	Objective Methods	21
2.6	Review	w on HDR Image Quality Assessment	24
	2.6.1	HDR-VDP-2: A Calibrated Visual Metric for Visibility and	
		Quality Predictions in All Luminance Conditions	24
	2.6.2	Objective Quality Assessment of Tone-Mapped Images	
		(TMQI)	26
	2.6.3	Perceptual Quality Assessment for Multi-Exposure Image	
		Fusion	28
	2.6.4	Blind High Dynamic Range Image Quality Assessment	
		using Deep Learning	30
	2.6.5	No-Reference Quality Assessment of Tone-Mapped HDR	
		Pictures	31
	2.6.6	No-Reference High Dynamic Range Image Quality	
		Assessment based on Tensor Decomposition and Manifold	
		Learning	33
2.7	Summ	ary	34
III Res	earch M	lethodology	35
3.1	Resear	ch Phase	35
	3.1.1	Literature Study	35
	3.1.2	Problem Formulation	36
	3.1.3	Conducting Research	36
	3.1.4	Reporting	36
3.2	Resear	ch Framework	36
3.3	Resear	rch Tools	37
3.4	Datase	et Collection	38
3.5	Propos	sed Method	41
	3.5.1	Accumulated Edge Strength	41
	3.5.2	Average/Mean Edge Strength	42
	3.5.3	Accumulated Luminance Image	43
	3.5.4	Average/Mean Luminance Image	43
	3.5.5	Features Combination 1	43
	3.5.6	Features Combination 2	43
	3.5.7	Features Combination 3	44
3.6	Evalua	tion Method	44
	3.6.1	Quality Evaluation 1 (QE1)	45
	3.6.2	Quality Evaluation 2 (QE2)	46
		viii	

		3.6.3	Quality Evaluation 3 (QE3)	46
	3.7	Perfor	mance Criteria	47
		3.7.1	Prediction Accuracy	47
		3.7.2	Prediction Monotonicity	48
		3.7.3	Prediction Consistency	48
	3.8	Resear	rch Schedule	48
	3.9	Summ	ary	49
IV	Resi	ults and	l Analysis	50
	4.1	Propos	sed Method	50
		4.1.1	Accumulated Edge Strength	52
		4.1.2	Average/Mean Edge Strength	54
		4.1.3	Accumulated Luminance Image	56
		4.1.4	Average/Mean Luminance Strength	56
		4.1.5	Features Combination 1	58
		4.1.6	Features Combination 2	58
		4.1.7	Features Combination 3	59
	4.2	Evalua	ation Results	59
		4.2.1	Accumulated Edge Strength	59
		4.2.2	Average/Mean Edge Strength	60
		4.2.3	Accumulated Luminance Image	62
		4.2.4	Average/Mean Luminance Image	63
		4.2.5	Features Combination 1	64
		4.2.6	Features Combination 2	64
		4.2.7	Features Combination 3	66
	4.3	Disscu	ission	72
	4.4	Summ	ary	72
V	Con	clusion	s and Future Works	73
	5.1	Conclu	usions	73
	5.2	Future	Works	75
Bi	bliogr	raphy		76
A	HDI	R Proce	ess Image Dataset	82

List of Figures

2.1	JPEG image coding	12
2.2	HDR vs LDR	13
2.3	HDR imaging pipeline	15
2.4	A multi-exposure approach used to capture an HDR image	17
2.5	Image quality assessment methods [29]	19
2.6	The description of the visual sessions for subjective experiments	
	with (a) Single Stimulus (SS) and (b) Double Stimulus (DS) [36]	19
2.7	Full-Reference model (FR-model) [28]	22
2.8	No-Reference model (NR-model) [28]	22
2.9	Reduced-Reference model (RR-model) [28]	23
2.10	Tradeoff between RR feature data rate and quality prediction	
	accuracy [49]	23
2.11	Research roadmap HDR image quality assessment	24
2.12	Predictions for visibility (discrimination) and quality	
	(mean-opinion-score) block diagram of the two visual metrics and	
	the underlying visual model [22]	26
2.13	Comparison of multi-scale structure diagram [20]	29
2.14	Overall flowchart of the proposed NR HDR-IQA method [10]	34
31	Research Phase	35
3.2	Research Framework	37
5.2		51
4.1	CemeteryTree(1): Top Left: First HDR reference image [23]. Top	
	Right: Paul algorithm. Buttom Left: Global Adjustment (GA)	
	algorithm. <i>Buttom Right:</i> Pece Kautz algorithm [1][7][16]	51
4.2	KingsCanyon: Top Left: Second HDR reference image [23]. Top	
	Right: Global Adjustment (GA) algorithm process. Buttom Right:	
	Paul algorithm process. Buttom Left: Pece Kautz algorithm process	
	[1][7][16]	51
4.3	AccEdgeStrength: Top Left: Gray (CemeteryTree(1)) reference	
	image. Top Right: Paul algorithm gray image. Buttom Left: Global	
	Adjustment (GA) algorithm gray image. Buttom Right: Pece	
	Kautz algorithm gray image.	52

4.4	AccEdgeStrength: Top Left: Gray (KingsCanyon) reference	
	image. Top Right: Global Adjustment (GA)'s algorithm gray	
	image. Buttom Left: Paul's algorithm gray image. Buttom Right:	
	Pece Kautz's algorithm gray image.	53
4.5	AccEdgeStrength: Top Left: Gray (CemeteryTree(1)) gradient	
	image. Top Right: Paul algorithm gradient image. Buttom Left:	
	Global Adjustment (GA) algorithm gradient image. Buttom Right:	
	Pece Kaut algorithm gradient image.	53
4.6	AccEdgeStrength: Top Left: Gray (KingsCanyon) gradient image.	
	Top Right: Global Adjustment (GA) algorithm gradient image.	
	Buttom Left: Paul algorithm gradient image. Buttom Right: Pece	
	Kautz algorithm gradient image.	54
4.7	AveEdgeStrength: Top Left: Gray (CemeteryTree(1)) gradient	
	image. Top Right: Paul algorithm gradient image. Buttom Left:	
	Global Adjustment (GA) algorithm gradient image. Buttom Right:	
	Pece Kautz algorithm gradient image.	55
4.8	AveEdgeStrength: Top Left: Gray (KingsCanyon) gradient image.	
	Top Right: Global Adjustment (GA) algorithm gradient image.	
	Buttom Left: Paul algorithm gradient image. Buttom Right: Pece	
	Kautz algorithm gradient image.	55
4.9	AccLuminanceImg: Top Left: Gray ($CemeteryTree(1)$) gradient	
	image. Top Right: Paul algorithm gradient image. Buttom Left:	
	Global Adjustment (GA) algorithm gradient image. Buttom Right:	
	Pece Kautz algorithm gradient image.	56
4.10	AccLuminanceImg: Top Left: Gray (KingsCanyon) gradient	
	image. Top Right: Global Adjustment (GA) algorithm gradient	
	image. Buttom Left: Paul algorithm gradient image. Buttom Right:	
	Pece Kautz algorithm gradient image.	57
4.11	AveLuminanceImg: Top Left: Gray (CemeteryTree(1)) gradient	
	image. Top Right: Paul algorithm gradient image. Buttom Left:	
	Global Adjustment (GA) algorithm gradient image. Buttom Right:	
	Pece Kautz algorithm gradient image.	57
4.12	AveLuminanceImg: Top Left: Gray (KingsCanyon) gradient	
	image. Top Right: Global Adjustment (GA) algorithm gradient	
	image. Buttom Left: Paul algorithm gradient image. Buttom Right:	
	Pece Kautz algorithm gradient image.	58

4.13	Scatter plot of the variation of the QE1, QE2, and QE3 assessment	
	(AccEdgeStrength) against subjective data score (MOS)	60
4.14	Scatter plot of the variation of the QE1, QE2, and QE3 assessment	
	(AveEdgeStrength) against subjective data score (MOS)	61
4.15	Scatter plot of the variation of the QE1, QE2, and QE3 assessment	
	(AccLuminanceImg) against subjective data score (MOS)	62
4.16	Scatter plot of the variation of the QE1, QE2, and QE3 assessment	
	(AveLuminanceImg) against subjective data score (MOS)	64
4.17	Scatter plot of the variation of the QE1, QE2, and QE3 assessment	
	(<i>EdgeStrength_M</i>) against subjective data score (MOS)	65
4.18	Scatter plot of the variation of the QE1, QE2, and QE3 assessment	
	(<i>EdgeLuminanceSth</i>) against subjective data score (MOS)	66
4.19	Scatter plot of the variation of the QE1, QE2, and QE3 assessment	
	$(Luminance_M)$ against subjective data score (MOS)	67

List of Tables

2.1	Literature Review	10
3.1	The Process Method Used to Process HDR Images [7]	38
3.2	Reference Image Files have been Collected [23]	39
3.3	Research Schedule	48
4.1	Subjective data score against QE scores variant (AccEdgeStrength).	60
4.2	Subjective data score against QE scores variant (AveEdgeStrength) .	61
4.3	Subjective data score against QE scores variant (AccLuminanceImg)	63
4.4	Subjective data score against QE scores variant (AveLuminanceImg)	63
4.5	Subjective data score against QE scores variant $(EdgeStrength_M)$.	65
4.6	Subjective data score against QE scores variant	
	(EdgeLuminanceStrength)	66
4.7	Subjective data score against QE scores variant $(Luminance_M)$	67
4.8	QE of Accumulated Edge Strength from Processed Images Feature .	68
4.9	QE of Average Edge Strength from Processed Images Feature	68
4.10	10 QE of Accumulated Luminance Image from Processed Images	
	Feature	69
4.11	QE of Average Luminance Image from Processed Images Feature .	69
4.12	QE of Features Combination 1 from Processed Images Feature	70
4.13	QE of Features Combination 2 from Processed Images Feature	70
4.14	QE of Features Combination 3 from Processed Images Feature	71
1.1	HDR Process Image Dataset Collections	82

LIST OF ABBREVIATIONS

Abbr.	Explanation
CNN	Convolutionary Neural Network
DMOS	Difference Mean Opinion Score
DMOS _p	Difference Mean Opinion Score Prediction
DS	Double Stimulus
EV	Exposure Value
FR	Full-Reference
HDR	High Dynmic Range
HDRI	High Dynamic Range Imaging
HDR-VDP	HDR-Visual Difference Predictor
HIGRADE	HDR Image GRADient Evaluator
HSV	Hue, Saturation, and Value
HVS	Human Visual System
IQA	Image Quality Assessment
ITMO	Inverse Tone Mapping Operator
JPEG	Joint Photographic Experts Group
KRCC	Kendall's Rank-order Correlation Coefficient
LAB	Lightness, A, and B
LCC	Linear Correlation Coefficient
LDR/SDR	Low/Standard Dynamic Range
MEF	Multi Exposure Frame
MPEG	Moving Pictures Experts Group
MSCN	Mean Ssubtracted Contrast Normalized
MSE	Mean Square Error
M-SSIM	Mean Structural Similarity Index
NR	No-Reference
NSS	Natural Scene Statistics
PLCC	Pearson's Linear Correlation Coefficient
PSNR	Peak Signal to Noise Ratio
QE1	Quality Evaluation 1
QE1_Sqrt	Quality Evaluation1 ^{1/2}

QE1_1	Quality Evaluation1 ¹
QE1_Square	Quality Evaluation1 ²
QE1_Cubed	Quality Evaluation1 ³
QE2	Quality Evaluation 2
QE2_Sqrt	Quality Evaluation2 ^{1/2}
QE2_1	Quality Evaluation2 ¹
QE2_Square	Quality Evaluation2 ²
QE2_Cubed	Quality Evaluation2 ³
QE3	Quality Evaluation 3
QoE	Quality of Experience
QoS	Quality of Service
RGB	Red, Green, and Blue
RR	Reduced-Reference
RMSE	Root Mean Square Error
SD	Standard Deviation
SS	Single Stimulus
SSIM	Structural Similarity Index
SRCC	Spearman's Rank-order Correlation Coefficient
SVR	Support Vectors Regression
TMQI	Time Mapping Quality Index
UHD	Ultra High Definition