ANALISIS DISTRIBUSI UDARA DAN TERMAL PADA RUANGAN

(Studi Kasus : Rumah Tinggal)

TUGAS AKHIR

KIKI SUNDARI1172004024

PROGRAM STUDI TEKNIK SIPIL
FAKULTAS TEKNIK DAN ILMU KOMPUTER
UNIVERSITAS BAKRIE
JAKARTA
2022

ANALISIS DISTRIBUSI UDARA DAN TERMAL PADA RUANGAN

(Studi Kasus: Rumah tinggal)

TUGAS AKHIR

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

KIKI SUNDARI

1172004024

PROGRAM STUDI TEKNIK SIPIL

FAKULTAS TEKNIK DAN ILMU KOMPUTER

UNIVERSITAS BAKRIE

JAKARTA

2022

HALAMAN PERNYATAAN ORISINALITAS

Tugas Akhir ini adalah hasil karya saya sendiri dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan benar.

Nama : Kiki Sundari

NIM : 172004024

Tanda Tangan :

Tanggal : Agustus 2022

HALAMAN PENGESAHAN

Tugas Akhir ini diajukan oleh:

Nama : Kiki Sundari

NIM : 1172004024

Program Studi: Teknik Sipil

Fakultas : Teknik dan Ilmu Komputer

Judul Skripsi : Analisis Distribusi Udara dan Termal Pada Ruangan

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik dan Ilmu Komputer, Universitas Bakrie.

DEWAN PENGUJI

Pembimbing: Jouvan Chandra P, S.T., M.Eng., IPP

(2) (2) (brank) Penguji : Dr. M. Ihsan, S.T., M.T., M.Sc

Penguji : Dr. Ir. Budianto Ontowirjo, Msc.,

Ditetapkan di : Jakarta

Tanggal : Agustus 2022

UCAPAN TERIMA KASIH

Puji syukur kepada ALLAH SWT atas segala berkah dan rahmat-Nya yang telah memberikan penulis kesempatan untuk menyelesaikan tugas akhir yang berjudul "Analisis Distribusi Udara dan Termal Pada Ruangan".

Penulis menyadari bahwa tanpa bimbingan, bantuan dan doa dari berbagai pihak tugas akhir ini tidak akan dapat diselesaikan. Oleh karena itu penulis mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang telah membantu dalam proses penulisan tugas akhir ini, yaitu kepada:

- Allah SWT, oleh karena-Nya telah memberikan penulis kesempatan dalam menulis serta menyelesaikan tugas akhir ini.
- Kedua orang tua dan keluarga yang senantiasa selalu memberikan doa, dukungan dan semangat kepada penulis.
- Ibu Prof. Ir. Sofia W. Alisjahbana, M.Sc., Ph.D. selaku Rektor Universitas Bakrie.
- Bapak Dr. Mohammad Ihsan, S.T., M.T., M.Sc. selaku Ketua Program Studi Teknik Sipil Universitas Bakrie.
- Ibu Safrilah, S.T., M.Sc. selaku dosen pembimbing akademik yang telah memberikan motivasi dan saran selama penulis berada di perkuliahan.
- Bapak Jouvan Chandra Pratama Putra, S.T., M.Eng. selaku dosen pembimbing tugas akhir yang telah memberikan motivasi, bantuan, bimbingan serta arahan kepada penulis dalam menyelesaikan tugas akhir.
- Bapak dan Ibu Dosen Program Studi Teknik Sipil Universitas Bakrie yang telah memberikan ilmu pengetahuan di bidang teknik sipil sehingga penulis dapat menyusun tugas akhir ini.
- Alfi Rachma Andini yang selalu memberikan dukungan dan semangat kepada penulis selama perkuliahan dan selama proses pengerjaan tugas akhir.
- Adella Clarabelle yang selalu memberikan semangat, menemani dan mendengarkan keluhan penulis pada saat proses pengerjaan tugas akhir berlangsung.

 Lino, Felix, Bang Chan, Changbin, Hyunjin, Seungmin, Han, IN, Jungwoo dan Doy yang selalu menemani, memberikan semangat serta membawa energi positif kepada penulis.

 Amalia Ismi Dauti yang banyak memberikan semangat, motivasi dan masukan kepada penulis.

 Kak Yuke, Nabila, Annisa Permata, Rani halimah, Siti Aisyah, Kak Roy, Bang Uzam dan teman- teman Teknik Sipil Angkatan 2017 dan kakakkakak 2016 yang memberikan motivasi serta menemani penulis semasa kuliah

• Bapak Budi dan Bapak Sigit yang selalu memberikan motivasi kepada penulis selama masa perkuliahan.

 Mba Imelda selaku Sekretaris Program Studi Teknik Sipil yang bersedia membantu penulis dalam mengurus segala keperluan administrasi selama masa perkuliahan.

 Mba Arin selaku Penanggung Jawab sidang akhir Studi Teknik Sipil yang bersedia membantu penulis dalam mengurus segala keperluan administrasi selama penyusunan Tugas Akhir.

Jakarta, Juni 2022

Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI

Sebagai sivitas akademik Universitas Bakrie, saya yang bertanda tangan di

bawah ini:

Nama : Kiki Sundari

NIM : 1172004024

Program Studi : Teknik Sipil

Fakultas : Teknik dan Ilmu Komputer

Jenis Tugas Akhir : Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada

Universitas Bakrie Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-free

Right) atas karya ilmiah saya yang berjudul:

ANALISIS DISTRIBUSI UDARA DAN TERMAL PADA RUANGAN

(Studi kasus: Rumah Tinggal)

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti

Noneksklusif ini Universitas Bakrie berhak menyimpan, mengalihmediakan atau

formatkan, mengelola dalam bentuk pangkalan data (database), merawat dan

mempublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai

penulis/pencipta dan sebagai pemilik Hak Cipta untuk kepentingan akademis.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Jakarta

Pada tanggal : Juni 2022

Yang menyatakan

(Kiki Sundari)

vi

ANALISIS DISTRIBUSI UDARA DAN TERMAL PADA RUANGAN

(Studi Kasus: Rumah Tinggal)

Kiki Sundari¹

ABSTRAK

Kenyamanan termal sangat penting bagi manusia, khususnya penduduk beriklim tropis. Terdapat banyak faktor yang dapat mempengaruhi kenyamanan termal di antaranya, temperatur, kecepatan udara dan kelembaban udara (RH). Penelitian ini menggunakan permodelan *Computational Fluid Dynamics* (CFD) pada ANSYS FLUENT R2021 *Student verssion* untuk mengetahui distribusi temperatur dan kecepatan udara yang terjadi guna mengetahui pengaruhnya terhadap kenyamanan termal. Penilaian kenyamanan termal pada penelitian ini menggunakan *thermal indeks* Fanger yaitu penilaian terhadap *Predicted Mean Vote* (PMV) dan *Predicted Percentage of Dissatisfied* (PPD) dengan Analisis menggunakan komparasi SNI serta CBE Thermal Tools. Hasil analisis komparasi SNI menunjukkan bahwa kondisi termal berada pada "Nyaman Optimal pada ambang atas" dan dari hasil kalkulasi pada CBE Thermal Tools, menghasilkan nilai PMV rata-rata -0,32 dengan PPD sebesar 11%, menunjukkan bahwa kenyamanan termal berada pada kondisi nyaman.

Kata Kunci: Kenyamanan Termal, Computational Fluid Dynamics (CFD), Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD, CBE Thermal Tools.

¹Mahasiswa Sarjana program Studi Teknik Sipil Universitas Bakrie

ANALISIS DISTRIBUSI UDARA DAN TERMAL PADA RUANGAN

(Studi Kasus: Rumah Tinggal)

Kiki Sundari¹

ABSTRACT

Thermal comfort is very important for humans, especially those who live in tropical regions. There are many factors that can affect thermal comfort, including temperature, air velocity and relative humidity (RH). This study uses Computational Fluid Dynamics (CFD) modeling on the ANSYS FLUENT R2021 Student Version to determine the distribution of temperature and air velocity, in order to determine their effect on thermal comfort. The assessment of thermal comfort in this study uses the Fanger Thermal Index, which is an assessment of PMV and Predicted Percentage of Dissatisfied (PPD), by analyzing between the SNI comparison and the CBE Thermal Tools. The results of the SNI comparison analysis show that the thermal conditions are at "Optimal Comfort" and from the calculation results on the CBE Thermal Tools, the average PMV value is -0.32 with a PPD of 11%, indicating that the thermal comfort is in a comfortable condition.

Key Word: Thermal Comfort, CFD, Predicted Mean Vote (PMV), Predicted Percentage Of Dissatisfied (PPD), CBE Thermal Tools.

¹Undergraduated Studenr of Civil Engineering Universitas Bakrie

DAFTAR ISI

HALA	MAN PERNYATAAN ORISINALITAS	ii
HALA	MAN PENGESAHAN	iii
UCAPA	AN TERIMA KASIH	iv
HALA	MAN PERNYATAAN PERSETUJUAN PUBLIKASI	vi
ABSTE	RAK	vii
ABSTR	PACT	viii
DAFTA	AR ISI	ix
DAFTA	AR GAMBAR	xii
DAFTA	AR TABEL	xiii
BAB I.		1
1.1.	Latar Belakang	1
1.2.	Rumusan Masalah	2
1.3.	Tujuan Penelitian	2
1.4.	Batasan Masalah	3
1.5.	Manfaat Penelitian	3
1.5	.1. Manfaat Untuk Mahasiswa	3
1.5	.2. Manfaat untuk peneliti	4
1.6.	Metodologi Penelitian	4
1.7.	Sistematika Penulisan	4
BAB II		6
2.1.	Kualitas Udara dalam Ruangan	6
2.2.	Ventilasi	7
2.2	.1. Ventilasi alami	7
2.2	.2. Ventilasi buatan	8

	2.3.	Sistem Distribusi Udara dalam Ruangan Tertutup	9
	2.4.	Pergerakan Udara	. 11
	2.5.	Pergantian Udara Per-jam (ACH)	. 12
	2.6.	Kenyamanan Termal	. 13
	2.6.	1. Thermal Human Comfort	. 14
	2.7.	Persamaan Kontinuitas	. 17
	2.8.	Persamaan Energi	. 18
	2.9.	Persamaan Navier- Stokes	. 18
	2.10.	Koefisien perpindahan panas	. 19
	2.11.	Computational Fluid Dynamics (CFD)	. 21
	2.12.	Bilangan Reynold	. 23
	2.13.	Aliran laminar	. 24
	2.14.	Aliran Turbulen	. 24
	2.15.	Pemodelan Aliran K-ε	. 25
	2.16.	Penelitian Terdahulu	. 25
В	BAB III	[. 27
	3.1	Diagram Alir Penelitian	. 27
	3.2	Identifikasi Masalah	. 29
	3.3	Studi Literatur	. 29
	3.4	Pengumpulan Data	. 29
	3.5	Tahapan pemodelan	. 31
	3.6	Thermal Index	. 33
	3.7	Validasi dan Analisi Hasil	. 35
В	BAB IV	,	. 36
	4.1.	Area Pengamatan	. 36
	4.2.	Kecepatan Udara dan Kontur Udara Pada Skema Exsisting	. 37

LAMI	LAMPIRAN		
DAFTAR PUSTAKA			
5.2.	Saran	52	
5.1.	Kesimpulan	52	
BAB V	V	52	
4.6.	Hasil Validasi Data	50	
4.5.	Thermal Index	47	
4.4.	Kelembaban Udara (Relative Humidity)	45	
Ans	ys	40	
4.3.	Distribusi Temperatur Kondisi Exsisting dan Skema Permodelan P	ada	

DAFTAR GAMBAR

Gambar 2. 1 Sistem kerja AC split	8
Gambar 2. 2 mixing ventilation	9
Gambar 2. 3 Displacement ventilation	10
Gambar 2. 4 Diagram Zona Nyaman Dan Temperatur Efektif	17
Gambar 2. 5 Perpindahan Panas Konduksi	20
Gambar 2. 6 Perpindahan Panas Konveksi	20
Gambar 2. 7 Perpindahan Panas Radiasi	21
Gambar 2. 8 Aliran Laminer	24
Gambar 2. 9 Aliran Turbulen	25
Gambar 3. 1 termometer	30
Gambar 3. 2 Anemometer	30
Gambar 3. 3 geometri kondisi exsisting	31
Gambar 3. 4 Tampilan Meshing Model	32
Gambar 3. 5 Hubungan PMV dan PPD	35
Gambar 4. 1 Titik Pengukuran	36
Gambar 4. 2 Distribusi Kecepatan Udara dengan nilai 2.6 m/s	37
Gambar 4. 3 Grafik Kecepatan Udara Hasil permodelan Skema Exsisting	38
Gambar 4. 4 Streamline	39
Gambar 4. 5 Distribusi Temperatur	41
Gambar 4. 6 Grafik Temperatur Hasil permodelan Skema Exsisting	42
Gambar 4. 7 Grafik Temperatur kondisi Exsisting	44
Gambar 4. 8 pscychometric chart	45
Gambar 4. 9 plotting parameter pada pschrometric chart	46
Gambar 4. 10 CBE Thermal Tools	47
Gambar 4. 11 Hasil kalkulasi CBE Thermal Tools	48
Gambar 4, 12 Hasil CBE Thermal Tools (tidak nyaman)	49

DAFTAR TABEL

Tabel 2. 1 Efektivitas Distribusi Udara	11
Tabel 2. 2 Pengaruh kecepatan aliran udara terhadap kenyamanan bagi manu	sia 12
Tabel 2. 3 Standar Kebutuhan Udara Untuk Tujuan Berbeda	13
Tabel 2. 4 Peneliti terdahulu	25
Tabel 2. 5 Peneliti terdahulu (Lanjutan)	26
Tabel 3. 1 Properties Fluida	33
Tabel 4. 1 Dry bulb temperature skema exsisting	46
Tabel 4. 2 Nilai kelembaban relatif udara (RH)	46
Tabel 4. 3 Hasil simulasi CBE Thermal Tools	49
Tabel 4. 4 Hasil simulasi CBE Thermal Tools (Lanjutan)	50
Tabel 4. 5 Nilai Standar Error Hasil Pengukuran dan skema exsisting	50

DAFTAR NOTASI

Q

tingkat penghawaan alami (m³/s)

V volume ruangan (m³) A luasan bukaan (m²) T_{m} suhu permukaan (K) faktor sudut antara orang dan permukaan F_{mp} koefisien konfeksi rata-rata globe h_a MRT *Mean Radiant Temperature* (°C) GT *globe temperature* (°C) kecepatan udara V_a emisivitas gobe = 0.95 (untuk *black globe*) \in D diameter of the gobe (m) T_a temperatur udara (°C) дρ perubahan massa jenis terhadap waktu per satuan volume (kg.m⁻³.s⁻¹) ∂t $\partial(\rho u)$ laju perubahan massa per satuan volume pada sumbu x (kg.m⁻³ .s⁻¹) laju perubahan massa per satuan volume pada sumbu y (kg.m⁻³.s⁻¹) $\partial(\rho w)$ laju perubahan massa per satuan volume pada sumbu z (kg.m⁻³.s⁻¹) ∂z viskositas dinamis (kg/m.s) kecepatan (m/s) μ ρ massa jenis (kg/m³) tekanan (Pa) p F kekuatan volume seperti gravitasi (m/s²) Laju Permindahan Panas Konduksi, W Q_{cond} k Konduktivitas Panas, W/m.K Luasan Perpindahan Panas, m² AGradien suhu, yang merupakan kemiringan kurva temperatur pada diagram TdTx (laju perubahan dari T dengan x), di lokasi x dxBeda jarak, m Laju perpindahan panas konveksi, W Q_{conv} h Koefisien perpindahan panas konveksi, W/m².K A_{ς} Luas permukaan dimana perpindahan panas konveksi berlangsung, m² T_{s} Temperatur permukaan, K T_{∞} Temperatur fluida yang cukup jauh dari permukaan, K Laju Perpindahan Panas Radiasi, W Q_{conv}

 σ = Konstanta Stefan-Boltzman, 5.67 x 10-8 W/m² .K4

 ε = Emisivitas bahan

 A_s = Luas permukaan dimana perpindahan panas radiasi berlangsung, m²

 T_s = Temperatur permukaan, K T_{surr} = Temperatur lingkungan, K

 $\rho = \text{massa jenis}$ U = kecepatan

L = karakteristik panjang μ = viskositas dinamika fluida $v(\mu/\rho)$ = viskositas kinematik fluida

PMV = predicted mean vote

M = nilai metabolisme, dalam W/m² dari area permukaan tubuh W = kegiatan exteral, dalam, =0 untuk kebanyakan aktivitas

 I_{cl} = daya tahan termal pada pakaian, dalam m^2K/W

rasio area permukaan orang ketika berpakaian, dengan area permukaan ketika

F_{cl} tidak berpakaian

 t_a = temperatur udara dalam ${}^{o}C$

t_r = mean radiant temperature dalam °C p_a = partial water vapour pressure dalam Pa

 h_c = convective heat transfer, dalam W/m^2K

 t_{cl} = permukaan temperatur pakaian, dalam ${}^{o}C$

PPD = Predicted Percentage of Dissatisfied