A COMPARATIVE STUDY ON IMAGE DEHAZING TECHNIQUES FOR IMAGE RESTORATION

UNDERGRADUATE THESIS

KHAIRUNNISA SAVITRI 1162001033

INFORMATICS STUDY PROGRAM FACULTY OF ENGINEERING AND COMPUTER SCIENCE BAKRIE UNIVERSITY JAKARTA 2023

A COMPARATIVE STUDY ON IMAGE DEHAZING TECHNIQUES FOR IMAGE RESTORATION

UNDERGRADUATE THESIS

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Computer in Informatics Study Program, Universitas Bakrie

KHAIRUNNISA SAVITRI 1162001033

INFORMATICS STUDY PROGRAM FACULTY OF ENGINEERING AND COMPUTER SCIENCE BAKRIE UNIVERSITY JAKARTA 2023

STATEMENT OF ORIGINALITY

The material in this Undergraduate Thesis is the result of my own work, and all sources are quoted and cited properly.

Name	:	Khairunnisa Savitri
NIM	:	1162001033
Signature	:	VAC
Date	:	August 24 th 2023

STATEMENT OF APPROVAL

This Research Report is prepared and submitted by:

Name	:	Khairunnisa Savitri
NIM	:	1162001033
Study Program	:	Informatics
Faculty	:	Engineering and Computer Science
Title	:	A Comparative Study on Image Dehazing
		Techniques for Image Restoration

has been successfully defended in front of the Board of Examiners. It has been approved by Thesis Supervisor and the Board of Examiners and accepted as partial fulfilment of the requirements needed to obtain a Bachelor's degree in Informatics Department, Faculty of Engineering and Computer Science, Bakrie University.

BOARD OF EXAMINERS

Thesis Supervisor : Irwan Prasetya Gunawan, Ph.D. (Examiner 1 : Yusuf Lestanto, ST, M.Sc. Examiner 2 : Berkah Iman Santoso, ST, MTI (August 25th, 2023 11:03 AM)

: Jakarta

: August 25th, 2023

Set in

Date

ACKNOWLEDGEMENT

The greatest thankfulness and praise are conveyed to Allah SWT for all the endless blessings and mercy with which I could finally finish this undergraduate thesis titled "A Comparative Study of Image Dehazing Techniques for Image Restoration". This final project is submitted as the partial fulfilment of the requirements to obtain a Bachelor's degree in the Informatics Department, Faculty of Engineering and Computer Science, Bakrie University.

During this research, there have been many people who have guided, helped and inspired me. The preparation of this report is not only a result of unilateral work but also needs help from many people. With some contributions from people's support, this report can be finished well and on time. Therefore, I also would like to express my sincere gratitude and appreciation to the following individuals:

- My special gratitude is dedicated to my beloved parents, godparents and my sisters (Dina and Caca) for their unconditional love, the neverending-prayers, cooperation, patience, understanding, and encouragement, which were the sustaining factors in carrying out the work successfully;
- 2. My thesis supervisor, Mr Irwan Prasetya Gunawan, for the invaluable advice, positive encouragement, and everlasting patience he has provided me throughout the preparation of this thesis;
- 3. Mr Berkah I. Santoso and Mr Yusuf Lestanto, as examiners in the thesis defence, who had given suggestions for improving the research content;
- My academic supervisor, Mr Guson Prasamuarso Kuntarto, who always gives guidance, suggestions and headways in my study progress throughout my study period;
- 5. Rizcy, Michelle, Aiy and Siti, who were always patient and kept reaching out and offering a helping hand to me in my tough time;
- 6. My beloved friends from Informatics 2016, seniors and juniors of Informatics. Thank you for the togetherness and kind support during my time at Bakrie University;
- 7. Elbert, Adit and Nursa, who have given their leisure time to listen and provide the solution when I found difficulties during my research;

- 8. All staff and civitas of Bakrie University who have facilitated the process of my thesis completion and created a comfortable learning atmosphere and facilities throughout my study at Bakrie University;
- 9. Contributors in Stackoverflow, Github and StackExchange who have helped me solve some technical problems while coding and writing this report.

Finally, I genuinely hope this Undergraduate Thesis can be used as a reference in the future and benefit the other parties who need it.

> Jakarta, August 22th 2023 Author

Khairunnisa Savitri

DECLARATION OF PARTIAL COPYRIGHT LICENSE

As student of Bakrie University, I hereby:

Name	:	Khairunnisa Savitri
NIM	:	1162001033
Study Program	:	Informatics
Faculty	:	Engineering and Computer Science

The author, whose copyright is declared on the title page of this file, agree and grant Bakrie University a non-exclusive royalty-free right for educational and academic endeavour with this Undergraduate Thesis titled:

A Comparative Study on Image Dehazing Techniques for Image Restoration

With the granted permission to use this material, Bakrie University is allowed to keep or make a digital copy, communicate, and publish this Undergraduate Thesis by providing full acknowledgement of the copyright and the source of the material.

It is understood that copying and publicizing of this word for financial gain shall not be allowed without written permission. The original Partial Copyright License attesting to these terms, and signed by this author, may be found is the original bound copy of this work, retained in The Bakrie University Archive.

Authorized in	:	Jakarta
Date	:	August 24 th 2023

Approved by,

Khairunnisa Savitri

A COMPARATIVE STUDY ON IMAGE DEHAZING TECHNIQUES FOR IMAGE RESTORATION

Khairunnisa Savitri¹

ABSTRACT

Image dehazing is the process of removing haze from images. It is a challenging problem due to the non-linear nature of the haze process and the lack of ground truth data. In recent years, deep learning techniques have been shown to be effective for image dehazing. This research presents a comparative study on image dehazing using CycleGAN and GMAN-Net. CycleGAN is a generative adversarial network that can translate images from one domain to another. GMAN-Net is a generic model-agnostic convolutional neural network that can be used to dehaze images by jointly estimating the transmission map and scene radiance. The study evaluated the performance of CycleGAN and GMAN-Net on a dataset of hazy images with ground truth clear images. The evaluation metrics were PSNR, SSIM, entropy, UIQM, and UCIQE. The results showed that GMAN-Net outperformed CycleGAN on all of the evaluation metrics. GMAN-Net also showed better visual results, with dehazed images that were more accurate and realistic than CycleGAN. The research concludes that GMAN-Net is better for image dehazing than CycleGAN. It is more accurate, realistic, and versatile than CycleGAN.

Keywords : image dehazing, CycleGAN, GMAN-Net, objective IQA, PSNR, SSIM, entropy, UIQM, UCIQE

¹Undergraduate Student of Informatics Study Program, Bakrie University

Contents

Sta	ateme	ent of Originality	i			
St	Statement of Approval ii					
Ac	know	ledgement	iii			
De	eclara	tion of Partial Copyright License	v			
Ał	ostrac	t	vi			
Ta	ble of	² Contents	vii			
Li	st of]	Fables	ix			
Li	st of I	Figures	X			
Li	List of Abbreviations xii					
1	Intr	oduction	1			
	1.1	Background	1			
	1.2	Problem Statement	4			
	1.3	Objective of Research	6			
	1.4	Scope of Research	6			
	1.5	Benefit of Research	7			
	1.6	Outline of Proposal	7			
	1.7	Summary	8			
2	Lite	rature Review	9			
	2.1	Related Works	9			
	2.2	Image Quality	14			
		2.2.1 Light Propagation and Attenuation	15			
		2.2.2 Haze	17			

	2.3	Image Enhancement and Restoration	21
	2.4	Image Dehazing	22
		2.4.1 State-of-the-Art on Image Dehazing	24
		2.4.2 Image Dehazing based on GMAN-Net	26
		2.4.3 Image Dehazing based on CycleGAN	27
	2.5	Image Evaluation Methods	29
		2.5.1 PSNR	30
		2.5.2 SSIM	31
		2.5.3 Entropy	31
		2.5.4 UIQM	31
		2.5.5 UCIQE	32
	2.6	Summary	33
3	Res	earch Methods	34
·	3.1	Research Phase	34
		3.1.1 Literature Study	34
		3.1.2 Problem Formulation	35
		3.1.3 Conducting Research	35
		3.1.4 Reporting	35
	3.2	Research Framework	35
	3.3	Tools	36
		3.3.1 Data Set	37
	3.4	The Proposed Methods	37
	3.5	Evaluation of Image Dehazing	38
	3.6	Research Schedule	39
	3.7	Summary	39
4	Res	ults and Discussions	40
	4.1	Proposed Method	40
		4.1.1 Preprocessing Data	40
		4.1.2 GMAN-Net	43
		4.1.3 CycleGAN	46
	4.2	Evaluation Results	49
	4.3	Summary	53
_	C		- 4
5		clusion and Future Works	54
	5.1	Conclusion	54
	5.2	Future Works	54

List of Tables

1.1	International Visibility Code with Meteorological Range [11]	5
3.1	List of Datasets	37
3.2	Dataset Details	37
3.3	Research Schedule	39
4.1	Selective Sampling Result from Hazy Datasets	40
4.2	Evaluation Results on GMAN-Net and CycleGAN Methods	50
4.3	Average Metrics Evaluation Results of GMAN-Net and CycleGAN	51

List of Figures

1.1	Indonesia's Annual Average PM _{2.5} Concentration from Year 1998-	2
1.2	2016 [6]	2
1.2	Indonesia's Annual Average PM _{2.5} Concentration from Year 2018- 2022 [7]	2
1.2		2 3
1.3	Expectation vs Application Gap on Computer Vision [8]	3
2.1	Taxonomy of Image Dehazing Techniques [16]	10
2.2	Mapping Taxonomy of Image Dehazing Literature [21]	13
2.3	Best Scenario of Optical Imaging [16]	14
2.4	Haze Optical Imaging [16]	15
2.5	Underwater Optical Imaging	19
2.6	GMAN-Net Architecture	26
2.7	CycleGAN Architecture [46]	28
2.8	Cyclic-Consistency Loss of CycleGAN [49]	28
3.1	Research Phase	34
3.2	Research Framework	36
4.1	Several ground-truth images from D-Hazy dataset samples	41
4.2	Several hazy images from D-Hazy dataset samples	41
4.3	Several ground-truth images from I-Haze dataset samples	41
4.4	Several hazy images from I-Haze dataset samples	41
4.5	Several ground-truth images from O-Haze dataset samples	41
4.6	Several hazy images from O-Haze dataset samples	41
4.7	Several ground-truth images from DenseHaze dataset samples	42
4.8	Several hazy images from DenseHaze dataset samples	42
4.9	Several ground-truth images from NH-Haze dataset samples	42
4.10	Several hazy images from NH-Haze dataset samples.	42
4.11	Several ground-truth images from SOTS dataset samples	42
4.12	Several hazy images from SOTS dataset samples	42

4.13	Several reference images from UIEBD dataset samples	43
4.14	Several hazy images from UIEBD dataset samples	43
4.15	GMAN-Net Flowchart	45
4.16	CNN's structure inside GMAN-Net	45
4.17	Cyclic-consistency Loss in CycleGAN	47
4.18	CycleGAN Flowchart	48
4.19	Several result images of CycleGAN (left side) and GMAN-Net	
	(right side) on DenseHaze, NH-Haze and UIEBD dataset	49
4.20	Result test images from CycleGAN and GMAN-Net.	49

LIST OF ABBREVIATIONS

Abbr.	Explanation
AQI	Air Quality Index
CNN	Convolutionary Neural Network
FR	Full-Reference
GAN	Generative Adversarial Network
GMAN-Net	Generic Model-Agnostic Convolutional Neural Network
HVS	Human Visual System
IQA	Image Quality Assessment
OQA	Objective Quantitative Assessment
MSE	Mean Square Error
NR	No-Reference
РМ	Particulate Matters
PSNR	Peak Signal to Noise Ratio
RR	Reduced-Reference
SQA	Subjective Qualitative Assessment
SSIM	Structural Similarity Index
UCIQE	Underwater Color Image Quality Evaluation
UIQM	Underwater Image Quality Measure