
Modul Panduan Raptor - Object
Oriented Programming

Yang Tidak Dipublikasikan

Yusuf Lestanto, ST., MSc., MBA

PROGRAM STUDI INFORMATIKA
FAKULTAS TEKNIK DAN ILMU KOMPUTER

UNIVERSITAS BAKRIE
Semester Genap 2023/2024

LEMBAR PENGESAHAN

1. Judul PkM : Modul Panduan Raptor - Object Oriented Programming

2. Ketua Tim Pengabdian

a. Nama lengkap : Yusuf Lestanto, ST., MSc., MBA.

b. NIDN : 0302057105

c. Pangkat/Golongan : Penata Muda Tk. I - III/b

d. Jabatan : Dosen Tetap

e. Telp/Alamat Surel : 087775084255 / yusuf.lestanto@bakrie.ac.id

3. Anggota Tim Pengabdian

a. Dosen : 1.

: 2.

b. Praktisi : 1.

: 2.

4. Peserta

a. Mahasiswa : 1.

: 2.

b. Alumni : 1.

: 2.

5. Biaya Kegiatan

a. Universitas Bakrie : Rp. 0,-

b. Sumber lain : Rp. 0,-

6. Tahun Pelaksanaan : Tahun 2024

Jakarta, 3 Mei 2024

Mengetahui,
Kaprodi Pelaksana Pengabdian

Iwan Adhicandra, Ph.D. (Sydney), SMIEEE Yusuf Lestanto, S.T., MSc., MBA
NIP: 0018025806 NIDN: 0302057105

Mengetahui,
Ketua LPkM Universitas Bakrie

Prof. Ardiansyah, S.TP., M.Si., Ph.D.
NIDN: 0318107501

1

Guidance Module: Raptor - Object Oriented Programming

Yusuf Lestanto

1 Basic Concepts of OOP

Object Oriented Programming (OOP) is a programming paradigm that focuses on creating objects

that have attributes (data/variables) and methods (functions/procedures) to manipulate these

data. OOP consists of four main concepts:

• Encapsulation

Encapsulation bundles the data (attributes) and the methods (functions) that operate on the

data into a single unit, called an object. It helps to control access to the data, protecting it

from outside interference and misuse. The main characteristics are:

– Data Hiding:

By using access specifiers like private, protected, or public, they restrict or control

how attributes and methods are accessed or modified from outside the class. By marking

a variable as private, it means that variable cannot be accessed directly outside the

class.

– Getter and Setter Methods:

Encapsulation is often implemented using getter and setter methods, which provide

controlled access to the private data. This ensures that the data can only be accessed

or modified in a safe and controlled manner.

– Modularity:

Encapsulation helps to achieve modularity by keeping the implementation details hid-

den. External classes can interact with the object through a well-defined interface

without knowing the inner algorithms.

• Inheritance

Inheritance allows a new class (called a child class or subclass) to inherit the attributes and

methods of an existing class (called a parent class or superclass). Therefore, it enables code

reusability and establishes a natural hierarchical relationship between classes. The main

characteristics are:

– Code Reusability:

Inheritance allows the child class to reuse code and properties of the parent class, which

helps in reducing code duplication.

2

– Hierarchical Structure:

It models relationships like ”is-a” or ”kind-of.” For example, if Animal is a parent class,

a Dog class can be a child class, inheriting behaviors of the Animal class, because a

dog is a type of animal.

– Extending Functionality:

A child class can add its own unique attributes and methods or override (redefine)

methods from the parent class to alter behavior as needed.

Inheritance has the following types:

– Single Inheritance:

A child class inherits from one parent class.

– Multiple Inheritance:

A child class inherits from more than one parent class (not supported directly in some

languages like Java).

– Multilevel Inheritance:

A child class is derived from another child class, creating a chain of inheritance.

– Hierarchical Inheritance:

Multiple child classes inherit from the same parent class.

• Polymorphism

The term ”polymorphism” comes from the Greek words ”poly” (meaning many) and ”morph”

(meaning forms). In the context of programming, polymorphism refers to the ability of

di↵erent objects to respond to the same operation or method call in di↵erent ways. The

essential features of Polymorphism are:

– Method Overriding (Runtime Polymorphism):

∗ Occurs when a subclass provides a specific implementation of a method that is

already defined in its superclass.

∗ The method name and parameters are the same, but the behavior is customized in

the subclass.

∗ Used to achieve dynamic (or late) binding, where the method to be executed is

determined at runtime.

– Method Overloading (Compile-Time Polymorphism):

∗ Occurs when multiple methods have the same name but di↵erent parameters (dif-

ferent type, number, or order of parameters).

∗ Used to implement similar operations with variations in input.

∗ The decision about which method to call is made at compile time based on the

method signature.

3

Polymorphism allows programmers to design more flexible and easily maintainable code

by enabling a single interface or method to represent multiple types or behaviors. This

abstraction is particularly powerful when combined with inheritance and interfaces, as it

enables objects to be treated as instances of their parent class while behaving according to

their specific implementations.

• Abstraction

Abstraction refers to the process of hiding the complex implementation details of an object

and only exposing the essential features that are necessary for the user. Abstraction allows

programmers to focus on what an object does rather than how it does it. The main features

are:

– Simplification:

Abstraction simplifies code by reducing complexity. It allows you to interact with an

object through a simplified interface without needing to know its inner workings.

– Hiding Implementation:

The internal processes and data handling are hidden from the outside world. For ex-

ample, you may know that a Car object has a method start(), but you don’t need to

understand the specific mechanism of how the engine starts internally.

– Interface-Driven Design:

Abstraction often utilizes interfaces or abstract classes in languages like Java or C#,

which define methods but do not implement them. Concrete classes that implement

these interfaces provide the actual functionality.

2 Object-Oriented Mode

RAPTOR enables the development of basic object-oriented programs through classes, which con-

tain attributes and methods. While it allows for the creation and instantiation of objects, it is

essential to acknowledge that this only provides a superficial understanding of the vast and intricate

subject of object-oriented programming.

To employ RAPTOR in an object-oriented programming (OOP) context, it is necessary to

choose the Object-oriented mode, as depicted in Figure 1. There are two tabs available: UML

andmain. RAPTOR utilizes a form of UML to design the structure of an object-oriented program.

Classes are defined in the UML screen by clicking on the UML tab. The button for adding a new

class (highlight number 1) is illustrated in Figure 2. Additionally, a new Return symbol (highlight

number 2) has been introduced to the set of symbols.

4

Figure 1: Set to OOP mode

Figure 2: UML

3 Creating a Class

When the Add New Class button is selected then a new class is created, a Name field will be

displayed. Provide a name for the class, as illustrated in Figure 3.

As shown in Figure 3, a class named Car has been created. To add members (methods and

attributes), double-click inside the Car class. In RAPTOR, attributes are referred to as Fields. A

new window will open, the class members are enabled to be entered (refer to Figure 4).

5

Figure 3: Creating a new class

Figure 4: Adding members to a Class

3.1 Using the Car Class to Find the Production Year of a Car

A class named Car will be used to get the information of production year. For this purpose the

following members will be needed:

• attribute: year (a number)

• methods: setYear(), getYear().

The Figure 5 shows the Class Car and its members.

• Note the syntax for a Field: A Field must be given a data type. The type of year is int.

6

Figure 5: Class Car and its members

• Note the syntax for a Method. If the Method receives a value passed from main, the

passing parameter must be included. For example,

– The Method setYear() is passed a value for the year of a car so the syntax for this

Method is

public void setYear(int year)

– The Method setModel() is passed a text for the model of a car so the syntax for this

Method is

public void setModel(String m)

– The Method getYear() retrieves the value of the year of a car. Syntax for this Method

is:

public int getYear()

– The Method getModel() retrieves the text of the model of a car. Syntax for this

Method is:

public String getModel()

Once the Class has been created, a new tab is automatically added, with the name of the Class

(see Figure 6). Now the code for each of the Class’s methods must be created. Click the Car tab

to see five new tabs—one for each Method, as shown in Figure 7.

7

Figure 6: New tab for the Class Car

Figure 7: New tabs for each new Method

3.2 Code the Methods

In Car class, there is a constructor as a special method which is used to initialize objects when

a class is instantiated (see Figure 8). It sets up the initial state of the object by assigning values

to its attributes and performing any setup tasks required before the object can be used. The main

characteritics of constructors:

• Same Name as Class

A constructor has the same name as the class in most programming languages.

• No Return Type

Constructors do not have a return type, not even void.

• Automatic Invocation

8

The constructor is called automatically when an object is created using the new keyword

(or equivalent syntax).

• Parameterization

Constructors can be parameterized to initialize the object with custom values, or they can

be a default constructor with no parameters.

In above example, the Car class has a constructor that initializes the model and year and make

attributes when a Car object is created. There are two types of constructors:

1. Default Constructor

Takes no parameters and initializes objects with default values.

2. Parameterized Constructor

Takes arguments to set specific values for the attributes.

Figure 8: The Constructor Method

Figure 8 illustrates that this Car class is defined with an additional constructor that accepts

parameters. When an object is created, the appropriate constructor will be invoked. This means

that if a new object is instantiated without parameters, the default constructor will be executed.

The other methods for thisCar are as follows: setYear(year), setModel(model), getYear(),

getModel().

3.2.1 Method setYear(year):

The setYear() Method does one thing only. It sets the value of the car’s year, as passed to it from

the main program, to the variable year. This assignment is done using the this keyword. The code

for this method is shown in Figure 9.

9

Figure 9: Code for the setYear() method

3.2.2 Method setModel(model):

The setModel() method has a single purpose: it assigns the car’s model value, provided by the

main program, to the model variable. This assignment is performed using the this keyword. Figure

10 displays the code for this method.

Figure 10: Code for the setModel() method

3.2.3 Method getYear():

The getYear() method retrieves the year value when invoked and returns it, as illustrated in Figure

11.

10

Figure 11: Code for the getYear() method

3.2.4 Method getModel():

The getModel() method is used to obtain the model’s text when called, and it returns the text

model, as depicted in Figure 12.

Figure 12: Code for the getModel() method

11

4 The main Program

Now we can create the Main program. This example is very straightforward; it enables the user

to input a car’s year and model, and then displays the entered information. This is achieved by

creating an instance of the ‘Car‘ class using the default constructor, and then utilizing the class’s

methods and attributes. Figure 13 illustrates how this is implemented in the RAPTOR OOP

approach.

Figure 13: Code for the main() method

12

References

[1] Venit, S. Extended Prelude to Programming: Concepts and Design-with CD. (Scott/Jones

Inc.,2003)

[2] Gaddis, T. Starting Out with Programming Logic and Design, 4/e. (Pearson Education,2015)

13

