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Abstract 
In this paper the dynamic response analysis of orthotropic rectangular plates 

subjected to moving.dynamic loads with multiple sudden changes of lateral positions 
is investigated. The orthotropic plate has mixed boundary conditions that is widely 
faced in engineering applications, but has not been widely addressed to in the 
literature, partially due to the numerical difficulties. The orthotropic plate is supported 
by a Pasternak foundation. This type of elastic foundation model is introduced to 
accommodate shear interactions between the spring elements. The plate's natural 
frequencies are presented in a form analogous to those of a simply supported plate 
as wave numbers. These wave numbers are determined from a system of two 
transcendental equations, obtained from the solution of two auxiliary Levy's type 
problems, also known as the Modified Bolotin Method. The multiple sudden lateral 
position change of the moving dynamic load is expressed by the Heaviside 
generalized function. The homogeneous solution of the problem can be solved by a 
method of separation of variables. The procedure comprises the derivation of a 
sequence of solutions of separable form, in such a way that superposition yields a 
solution satisfying the boundary conditions. The dynamic response of the plate is 

* expressed in integral form that is readily to be solved by using the Duhamel 
integration method. A numerical example is given, demonstrating the applicability of 
the theory to orthotropic plates with mixed boundary conditions under a multiple 
sudden lateral position change of a moving dynamic load. 

Keywords: orthotropic plate, mixed boundary condition, Pasternak foundation, Modified Bolotin 
Method, Duhamel integration method. 

I. Introduction 
The investigation of dynamic response of orthotropic plates supported by an elastic foundation under 
dynamic moving loads has been a topic of interest for well over a century for the design of rigid 
runway and roadway pavements. Such structures are often subjected to dynamic loads with multiple 
sudden changes of lateral positions. The design of rigid pavements is traditionally based on the 
analytical solution of an infinitely long plate under an equivalent static load. Such design methods 
have deficiencies as the dimensions of such structures are finite and the moving vehicles exert 
dynamic loads of various amplitudes due to the mechanical vibration of engines. The behavior of 
structures under dynamic loads is different from that under static loads. The load amplitude of the 
dynamic load is often assumed to be constant. However, the dynamic loads created for example by 
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vehicles in fact have variations in load amplitude with. tirne. resulted from the pavement surfac, 
roughness and the mechanics systems of the vehicle Most of the studies were conducted fo 
dynamic loads of constant amplitude. Dynamic response of plates restinq on an elastic foundation ha< 
attracted much less attention, in comparison with the dynamic loads on ri M M h 
investigations involved analytical procedures for plates with s i m p l e a n d ^ b o ^ ^ o S 
Gbadeyan and On, ( 992) gave a closed form solution by using a double Fourier sine Integra 
transformation to analyze a simply supported rectangular plate resting on an elastic Pasternat 
foundation subjected to an arb.trary number of moving concentrated masses. Static and free vibratio 
analyses of plates resting on an elastic foundation had been studied AvtA n«hi«hi w 0 v , m n i 0 k „ e u 
(1997) and Pevzner et al. (2000). Extensive studies of the SSSiS^SSrfS f P I ?J 
an elastic foundation with simply supported and u n s y m f i ^ T h ^ b i 

investigated by Alisjahbana and Wangsadinata (2005, 2006 ? 3 n ^ ^ 
( M d M ) . 

In the present research work the problem of an orthotronir r - ( . n „ .• 

foundation under a multiple sudden lateral position change of ^ ™ T P ! P a * T a k 

whereby the plate is under a very general restraint conditio ^ alono i t ^ T n n i ° t k ' S k f S t U d ! ? d ' 
are solved using the Modified Bolotin Method. As the mode aHL?2** 5 v , b r a t l o V m o d e s 

eigenfunctions, the dynamic solution of the plate is obtained o n t h S f S I ^ °f 

eigenfunctions. The dynamic response of the plate is expressed in^£222? 
readily integrated to obtain the various dynamic responses of the plate S ° ^ 

The geometry and material properties are assumed to be linear Piacti^ »k« «. * 
consideration is of finite dimensions. Finally results for d a m r 3 ^ f ^ ^ 6 " 
bending and twisting moments, shear forces of the plate are^llTn E?1 t ****™> 
damping ratio and load frequency. Presented incorporating the effects of 

2. Governing Equation 
Using the classical theory of thin plates, the equation of equilibrium of an elastic orthotropic plate 
resting on a Pasternak foundation is as follows: 

_ a 4w a"w _ a 4 w , aw . a 2 w . n ( a 2 w a 2w ^ 
D » — r + 2B—s—^ + D V — ^ + yh — +ph——+ k , w - G J — - + £_w_ _ n / v „ »\ 

x a x 4 ax 2ay 2 y ay 4 r at H at 2 ' i p M " * * * * ) 
(1) 

where DX 1 D y= plate stiffness in x and y direction; B= plate torsional stiffness; v= damping ratio; h= 
plate thickness; p= plate mass density, k j - stiffness of the foundation; Gs= shear modulus of the 
foundation; t= time; x y = rectangular Cartesian coordinates in the plane of the plate; p(x,y,t)= dynamic 
load acting on the plate. The harmonic concentrated load which suddenly moves to a new position at 
t=t! and continues to moves again to another new position at t=t 2 can be expressed as -

For OStSti: p(x, y, t) = P0 (1 + a cos cot) 6 [ x - ( x 0 + A ^ H (t - t , ) ) ] 8 [y _ yQ j 

(2) 

For t, <t<t2: p(x, y, t) = P0 (1 + a cos cot) 6 [x - (x, + Ax 2H (t - 1 2 ) ) ] 5 [y __ y q j 

(3) 

where P0= amplitude of the load; a= load coefficient=0.5; co= angular frequency of the load; Xo= initial 
position of the load in x direction; Ax,= sudden position change of the load at M , ; . Ax2 sudden 
position change of the load at t=t 2;.and H= Heaviside unit step generalized function 

Consider the following types of support conditions for the plate edge-

along x=0 

-D a 2w a 2 w i , aw 
— r + v y - r T = k i — ;w = o 
ax2 y ay 2 J 1 ax 

(4) 
along x=a 
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(5) 
along y=0 and y=b 

(6) 

' o 2 w a 2 w SJL+v.^ = 0 ;w = 0 

where u x is the Poisson's ratio in x direction, o y is the Poisson's ratio in y direction, k-\s an elastic 
rotational restraint constant along x=0; k 2 is an elastic rotational restraint along x=a. A model of an 
orthotropic damped plate with unsymmetrical restraints along its edges resting on an elastic 
foundation subjected to a moving dynamic load with multiple sudden change in lateral positions can 
be established. 

3. General Analysis 
In order to solve the problem described above, it is assumed that the principal elastic axes of the 
material are parallel to the plate edges and the free vibration solution of the problem is set as: 

w(x,y,t) = W(x,y)sincot 

(7) 

where co is the circular frequency and W(x,y) is a function of the position coordinates only. Then 
substituting Eq.(7) into the undamped free vibration form of Eq.(1) yields: 

x ax4 

(8) 

a z w a 2 w 
+• 3x2 

= 0 

The next step is to find the solution of Eq.(8) with the boundary conditions according to Eq (4), Eq.(5) 
and Eq.(6), to obtain the eigen frequencies and the mode shapes of the orthotropic plate with mixed 
support conditions at its edges. By postulating the following eigen frequency, which is analogous to 
the case of a plate simply supported at all edges (Pevzner et al. 2000), natural frequencies of the 
system can be expressed as: 

Iph 
D„ I — 

3 lS P h ph 

;9) 

vhere p and q are real numbers to be solved from a system of two transcendental equations, 
ibtained from the solution of two auxiliary Levy's type problems, also known as the Modified Bolotin 
Method (Pevzner et al. 2000). 

Shear layer 

Spring layer 

/77 '/// 7 /////// > ////?//>/////////// 
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Figure 1. Rectangular orthotropic plate on a Pasternak foundation subjected to dynamic moving loads 
with multiple sudden changes of lateral positions. 

4. Dynamic Response of the Plate 
The dynamic response of the plate can be found by using the method of variation of parameters as a 
general method of determining a particular solution of the corresponding non-homogeneous partial 
differential equation, which can be written in the following form: 

* ^ y . t ) = I E W » ( y ) T « ( i ) 
m«1 n=1 

(10) 

where X m (x) , Y n(y) are eigenfunctions, T m n ( t ) is a function of time which must be determined through 
further analysis. 

The differential equation for the coefficient functions Tm n(t) can be expressed as: 

P(x,y,t) Tm n(t) + 2 Y co m n t m n ( t )+coLT m n ( t )= |X m (x)dxJY n (y)dy. 
0 0 

(11) 

where Q m n is a normalization factor. 
The particular solution of the temporal function T m n ( t ) can be represented in a form of the Duhamel 
convolution integral as follows: 

^ ( t ) = J | ^ l i K ( x ) d x j Y B ( y ) d y 
0 . P n V J m n 0 0 

(12) 

,-r"tai(i-t 
sin co, ,Vcw I )(t 

The general solution for the forced response deflection of the plate to an arbitrary dynamic moving 
load p(x,y,t) is given in integral form as follows: 

w ( x , y , t ) = 2 X m ( x ) 2 Y n ( y ) j H M i i 
m . i „,! 0 J _ phQmn 0 

(13) 

|X m (x )dx jY n (y )dy T 7 5 - h k * - T , ) ( t - t ) d * •vP-r) . 

Bending moments and vertical shear forces in the plate can be computed in terms of the deflection 
and its derivatives obtained from Eq. (13). 

5. Results 
An orthotropic rectangular plate resting on an elastic Pasternak foundation subjected to a dynamic 
load with multiple sudden change of lateral position is considered. The data for the plate and load 
amplitude for the numerical examples treated in this section are as follows: a=7.5 m, b=15 m (Figure 
1), h=0.5 m, E x=3.0x10 1 0 N/m2, E y=2.0x10 1 0 N/m 2, Gp=1.09x101 0 N/m2, o x=0.15, u y =0.1 , and P 0=2x10 5 

N. The boundary conditions are: partially fixed along the longitudinal edges (x=0, 7.5 m) and simply 
supported along the shorter edges (y=0, 15m). 

In this numerical example, the Pasternak elastic foundation stiffnesses are given as kf=7.5x107 

N/m3 and G s=1.0x10 7 N/m3. The load initial position is at (Xo=2.5m and y 0=7.5m) and at t=ti, the load 
suddenly moves to a new position at (x-i=3.0m and y0=7.5m). At t=t 2, the load suddenly moves to 
another new position again at (x2=3.5m and y 0=7.5m). 

Due to the mechanical systems of the vehicle, the moving loads exerted by the vehicle might not 
have a constant amplitude, and a moving harmonic load model is generally used in practical analysis 
(Kim & Roesset 1998). In'this paper a single moving harmonic concentrated load P0(1+acoscot), 
suddenly moving from one position to another position along the middle line (y 0=7.5m) is considered. 
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Figure 2 shows the response spectra under the moving harmonic load when foundation stiffness is 
oiven as kf=7.5x107 N/m 3 for various damping ratios. It can be seen that the damping ratios play an 
important factor to reduce the dynamic deflection of the system. 

Figure 3 illustrates the effect of the magnitude of the sudden x position change on the maximum 
deflection under the moving load for various damping ratios. As expected, the maximum dynamic 
deflection increases as the change in x position increases for all values of damping ratio. 
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Figure 2. Response spectra as a function of load's frequency for various values of damping ratios. 
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Figure 3. Response spectra as a function of the magnitude of the sudden x position change (Ax2) for 
various values of damping ratios. 

The bending moments and shear forces change with the increase of the damping ratio for the 
value of co=500 rad/s which is far away from the first natural frequency of the system (Figure 4-Figure 
9). 

Figure 10 shows the response spectra as a function of load's frequency for various values of 
elastic foundation stiffnesses. It is obvious that when the plate rests on a weak foundation, the 
dynamic deflection becomes smaller as the foundation stiffness increases. Figure 11 and Figure 12 
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show the time history at central point for y=0% and co=50 rad/s. It can be seen that by increasing the 
foundation stiffness by 10 times, the maximum value of dynamic deflection decreases drastically. 

The effect of the sudden change of position of the dynamic load on the response is investigated 
next. Figure 13 shows the shape of the total dynamic deflection at t=to, when the load suddenly 
moves to its new position. It can be seen that the deflected area is concentrated only under the 
dynamic load. Finally, Figure 14 shows the total dynamic load deflection shape at i=U, when the load 
suddenly moves to another new position. It can be seen that the deflected area almost covers the 
entire plate due to the affect of the first load's configuration. 

Figure 4. M x distribution along the x-axis for 
y=0%, co=500 rad/s computed att=5 s. 

My Ln I I I 

Figure 6. M y distribution along the x-axis for 
y=0%, co=500 rad/sec computed at t=5 s. 

Figure 8. Q x distribution along the x-axis for 
y=0%, co=500 rad/ computed at t=5 s. 

Mx 
200000 

150000 

100000 

50000 

-50000 

-100000 

-150000 

-200000 

L 

D 

Figure 5. M x distribution along the x-axis 
y=10%, co=500 rad/s computed at t=5 s. 
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Figure 7. M y distribution along the x-axis 
y=10%, ©=500 rad/s computed at t=5 s. 
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Figure 9. Q x distribution along the x-axis 
Y=10%, co=500 rad/ computed at t=5 s. 
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Figure 10. Response spectra as a function of load's frequency for 'various values of elastics 
foundation stiffness. 

Figure 11. Time history at central point for Figure 12. Time history at central point for 
k f=7.5x107 N/m3, y=0%, co=50 rad/s. k,=7.5x108 N/m 3 , y=0%, co=50 rad/s. 
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Figure 13. Total dynamic deflection shape Figure 14. Total dynamic deflection shape 
calculated at fcstttt, kf=7.5x107 N/m3, y=10%, calculated at t ^ tS t 2 l kf=7.5x107 N/m3, y=10%, 
co=50 rad/s. co=50 rad/s. 
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6. CONCLUSION 
In this research work, a procedure is proposed, using the Modified Bolotin Method and the Duhamel 
integration method to investigate the dynamic behavior of a damped orthotropic plate resting on an 
elastic Pasternak foundation subjected to a dynamic moving load. The effect of the elastic foundation 
stiffness, magnitude of the sudden x-position change and damping ratio are discussed. Numerical 
examples show that the elastic foundation stiffness and damping ratio are the main factors having 
significant effects on the dynamic responses. The maximum dynamic deflections increase as the 
magnitude of the sudden longitudinal position change increases for all loading frequencies studied. 
The absolute maximum dynamic deflections will occur if the time of change in longitudinal position of 
the load coincides with the time at which the deflection is maximal prior to the sudden change in 
longitudinal position. 
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