Priyanto, Habib Septrian (2023) PENERAPAN MODEL DERET WAKTU HARGA EMAS MENGGUNAKAN LONG SHORT-TERM MEMORY (LSTM) DAN BIDIRECTIONAL LONG SHORT-TERM MEMORY (BI-LSTM)PENERAPAN MODEL DERET WAKTU HARGA EMAS MENGGUNAKAN LONG SHORT-TERM MEMORY (LSTM) DAN BIDIRECTIONAL LONG SHORT-TERM MEMORY (BI-LSTM). Tugas Akhir (S1) - thesis, UNIVERSITAS BAKRIE.
Preview |
Text (COVER)
00. Cover.pdf - Submitted Version Download (128kB) | Preview |
Text (BAB I-III)
01. BAB I-III.pdf - Submitted Version Restricted to Registered users only Download (948kB) |
|
Text (BAB IV)
02. BAB IV.pdf - Submitted Version Restricted to Registered users only Download (1MB) |
|
Text (BAB V)
03. BAB V.pdf - Submitted Version Restricted to Registered users only Download (72kB) |
|
Text (Daftar Pustaka)
04. Daftar Pustaka.pdf - Submitted Version Download (152kB) |
|
Text (Lampiran)
05. Lampiran.pdf - Submitted Version Restricted to Registered users only Download (791kB) |
Abstract
Emas merupakan logam mulia yang sering digunakan alat investasi dan memiliki nilai ekonomis. Kenaikan peminat dan nilai emas pada tahun 2023 naik dari tahun 2019 dikarenakan emas dianggap sebagai investasi yang mudah dilakukan, memiliki risiko rendah, dan cenderung mengalami kenaikan nilai dalam jangka waktu tertentu. Namun, emas memiliki sifat fluktuasi di pasar emas sehingga sangat sulit dan rumit untuk dipelajari. Maka dari itu, solusi dari permasalahan ini adalah menggunakan neural networks sebagai metode untuk prediksi harga emas yaitu algoritma Long Short-Term Memory (LSTM) dan Bidirectional Long Short-Term Memory (Bi-LSTM). Peneliti menggunakan data berisi 1143 baris data dengan jangka waktu 2 Januari 2019 - 19 Juli 2023 yang akan dievaluasi dengan Mean Percentage Absolute Error (MAPE), Root-Mean-Square Error (RMSE), dan Coefficient of determination (R-squared) sebagai output-nya. Hasil model Bi�LSTM lebih baik dibanding LSTM juga pada penelitian sebelumnya dalam aspek evaluasi performa model MAPE. Tetapi, hasil dalam aspek evaluasi peforma model RMSE memiliki hasil lebih baik penelitian sebelumnya daripada hasil penelitian ini
Item Type: | Thesis (Tugas Akhir (S1) - ) |
---|---|
Additional Information: | Agarwal, V. (2015). Research on Data Preprocessing and Categorization Technique for Smartphone Review Analysis. International Journal of Computer Applications, 131(4), 30–36. https://doi.org/10.5120/ijca2015907309. Alhamdani, F. D. S., Marthasari, G. I., & Aditya, C. S. K. (2021). Prediksi Harga Emas Menggunakan Metode Time Series Long Short -Term Memory Neural Network. https://repositor.umm.ac.id/index.php/repositor/article/view/1378/pdf Ben Ameur, H., Boubaker, S., Ftiti, Z., Louhichi, W., & Tissaoui, K. (2023). Forecasting commodity prices: empirical evidence using deep learning tools. Annals of Operations Research. https://doi.org/10.1007/s10479-022-05076-6 Brownlee, J. (2017). Long Short-Term Memory Networks With Python. Machine Learning Mastery. https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=2205737 Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7(5), e623. https://doi.org/10.7717/peerj-cs.623 Ferdiansyah, F., Othman, S. H., Zahilah Raja Md Radzi, R., Stiawan, D., Sazaki, Y., & Ependi, U. (2019). A LSTM-Method for Bitcoin Price Prediction: A Case Study Yahoo Finance Stock Market. 2019 International Conference on Electrical Engineering and Computer Science (ICECOS). https://doi.org/10.1109/icecos47637.2019.8984499 Galushkin, A. I. (2007). Neural Networks Theory. Springer Berlin Heidelberg. https://download.e-bookshelf.de/download/0000/0113/24/L-G-0000011324-0002344482.pdf Google. (2019). Google Colaboratory. Google.com. https://colab.research.google.com/ Halimi, I., Marthasari, G. I., & Azhar, Y. (2019). Prediksi Harga Emas Menggunakan Univariate Convolutional Neural Network. Jurnal Repositor, 1(2), 105–116. https://doi.org/10.22219/repositor.v1i2.612 Madhika, Y. R., Kusrini, & Hidayat, T. (2023). Gold Price Prediction Using the ARIMA and LSTM Models. Jurnal Dan Penelitian Teknik Informatika, 3(8). https://doi.org/10.33395/sinkron.v8i3.12461 Makala, D., & Li, Z. (2021). Prediction of gold price with ARIMA and SVM. Journal of Physics: Conference Series, 1767(1), 012022. https://doi.org/10.1088/1742-6596/1767/1/012022 Nichols, J. A., Herbert Chan, H. W., & Baker, M. A. B. (2018). Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophysical Reviews, 11(1), 111–118. https://doi.org/10.1007/s12551-018-0449-9 Nugraha, Y. E., Ariawan, I., & Arifin, W. A. (2023). Weather Forecast From Time Series Data Using LSTM Algorithm. JURNAL ILMIAH TEKNOLOGI INFORMASI DAN KOMUNIKASI, 14(1), 144–152. https://doi.org/10.51903/jtikp.v14i1.531 Pandas. (2018). Python Data Analysis Library — pandas: Python Data Analysis Library. Pydata.org. https://pandas.pydata.org/ Prasetyo, V. R., Axel, S., Soebroto, J. T., Sugiarto, D., & Winatan, S. A. (2022). Prediksi Harga Emas Berdasarkan Data gold.org menggunakan Metode Long Short Term Memory. Jurnal Sistem Informasi, 11(3). https://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/download/1999/469 Primananda, S. B., & Isa, S. M. (2021). Forecasting Gold Price in Rupiah using Multivariate Analysis with LSTM and GRU Neural Networks. Advances in Science, Technology and Engineering Systems Journal, 6(2), 245–253. https://doi.org/10.25046/aj060227 Seng Hansun, & Suryadibrata, A. (2021). Gold price prediction in covid-19 era. International Journal of Computational Intelligence in Control, 13(2), 29–34. https://www.mukpublications.com/resources/ijcic%20v13-2-4.pdf Shahid, F., Zameer, A., & Muneeb, M. (2020). Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos, Solitons & Fractals, 140(0960-0779), 110212. https://doi.org/10.1016/j.chaos.2020.110212 Singarimbun, R. N., Nababan, E. B., & Sitompul, O. S. (2019). Adaptive Moment Estimation To Minimize Square Error In Backpropagation Algorithm. https://doi.org/10.1109/icosnikom48755.2019.9111563 Singh, N. P., & Joshi, N. (2018). Investigating Gold Investment as an Inflationary Hedge. Business Perspectives and Research, 7(1), 30–41. https://doi.org/10.1177/2278533718800178 Sunaryo. (2022). Determinan Harga Emas. Kinerja Jurnal Ekonomi Dan Bisnis, 5(1). https://uia.e-journal.id/Kinerja/article/view/2126 Vidya, G. S., & Hari, V. S. (2020). Gold Price Prediction and Modelling using Deep Learning Techniques. 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS), 28(31). Thiruvananthapuram. https://doi.org/10.1109/raics51191.2020.9332471 Yahoo. (2021). How to Read Stock Charts: An Investor’s Guide. Yahoo Finance. https://finance.yahoo.com/news/read-stock-charts-investor-guide-165134879.html Yahoo. (2023). Gold Apr 20 (GC=F) Stock Historical Prices & Data - Yahoo Finance. Finance.yahoo.com. https://finance.yahoo.com/quote/GC%3DF/history?p=GC%3DF Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061 Yang, M., & Wang, J. (2022). Adaptability of Financial Time Series Prediction Based on BiLSTM. Procedia Computer Science, 199, 18–25. https://doi.org/10.1016/j.procs.2022.01.003 Yurtsever, M. (2021). Gold Price Forecasting Using LSTM, Bi-LSTM and GRU. European Journal of Science and Technology, Supp.1(31), 341–347. https://doi.org/10.31590/ejosat.959405 World Gold Council. (2023, May 5). Gold Demand Trends Q1 2023. World Gold Council. https://www.gold.org/goldhub/research/gold-demand-trends/gold-demand-trends-q1-2023 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Sanjay Ghemawat, Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Manjunath Kudlur, & Levenberg, J. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Tensorflow. https://www.tensorflow.org/ |
Uncontrolled Keywords: | emas, deret waktu, neural networks, LSTM, Bi-LSTM |
Subjects: | Computer Science Computer Science > Informatics Thesis > Thesis (S1) |
Divisions: | Fakultas Teknik dan Ilmu Komputer > Program Studi Informatika |
Depositing User: | Habib Septrian Priyanto |
Date Deposited: | 01 Sep 2023 08:23 |
Last Modified: | 01 Sep 2023 08:23 |
URI: | https://repository.bakrie.ac.id/id/eprint/8493 |
Actions (login required)
View Item |